Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α.

[1]  K. Tronstad,et al.  Mitochondrial Biogenesis : Pharmacological approaches ” REGULATION AND QUANTIFICATION OF CELLULAR MITOCHONDRIAL MORPHOLOGY AND CONTENT , 2013 .

[2]  J. Smeitink,et al.  Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. , 2014, Biochimica et biophysica acta.

[3]  M. Harper,et al.  Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. , 2013, Trends in biochemical sciences.

[4]  J. Smeitink,et al.  Primary fibroblasts of NDUFS4(-/-) mice display increased ROS levels and aberrant mitochondrial morphology. , 2013, Mitochondrion.

[5]  P. Berger,et al.  Adaptative capacity of mitochondrial biogenesis and of mitochondrial dynamics in response to pathogenic respiratory chain dysfunction. , 2013, Antioxidants & redox signaling.

[6]  J. Prehn,et al.  Central roles of apoptotic proteins in mitochondrial function , 2013, Oncogene.

[7]  David S. Park,et al.  LKB1-regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction. , 2013, Human molecular genetics.

[8]  Jolein Gloerich,et al.  BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion. , 2013, Antioxidants & redox signaling.

[9]  J. Smeitink,et al.  OXPHOS mutations and neurodegeneration , 2012, The EMBO journal.

[10]  P. Ježek,et al.  Disrupted ATP synthase activity and mitochondrial hyperpolarisation-dependent oxidative stress is associated with p66Shc phosphorylation in fibroblasts of NARP patients. , 2013, The international journal of biochemistry & cell biology.

[11]  R. Rodenburg,et al.  Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells. , 2012, Antioxidants & redox signaling.

[12]  D. Hardie,et al.  AMP-activated protein kinase: a target for drugs both ancient and modern , 2012, Chemistry & biology.

[13]  R. Rodenburg,et al.  Metabolic consequences of NDUFS4 gene deletion in immortalized mouse embryonic fibroblasts. , 2012, Biochimica et biophysica acta.

[14]  Tonya A Schneidereith,et al.  Activation of the stress proteome as a mechanism for small molecule therapeutics. , 2012, Human molecular genetics.

[15]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[16]  D. Hardie,et al.  AMPK: a nutrient and energy sensor that maintains energy homeostasis , 2012, Nature Reviews Molecular Cell Biology.

[17]  Werner J H Koopman,et al.  Monogenic mitochondrial disorders. , 2012, The New England journal of medicine.

[18]  M. Mattson,et al.  Recruiting adaptive cellular stress responses for successful brain ageing , 2012, Nature Reviews Neuroscience.

[19]  J. Smeitink,et al.  Pharmacological targeting of mitochondrial complex I deficiency: the cellular level and beyond. , 2012, Mitochondrion.

[20]  L. Buydens,et al.  Isolated mitochondrial complex I deficiency: explorative data analysis of patient cell parameters. , 2011, Current pharmaceutical design.

[21]  Anna Golubitzky,et al.  Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient's Fibroblasts, Reveals AICAR as the Most Beneficial Compound , 2011, PloS one.

[22]  J. Lippincott-Schwartz,et al.  Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation , 2011, Proceedings of the National Academy of Sciences.

[23]  C. Chinopoulos Mitochondrial consumption of cytosolic ATP: Not so fast , 2011, FEBS letters.

[24]  Qilong Wang,et al.  Redox Regulation of the AMP-Activated Protein Kinase , 2010, PloS one.

[25]  Elizabeth L. Johnson,et al.  Quiescent Fibroblasts Exhibit High Metabolic Activity , 2010, PLoS biology.

[26]  C. Steegborn,et al.  The Lifespan-regulator p66Shc in mitochondria: redox enzyme or redox sensor? , 2010, Antioxidants & redox signaling.

[27]  E. Abraham,et al.  Exposure to Hydrogen Peroxide Induces Oxidation and Activation of AMP-activated Protein Kinase* , 2010, The Journal of Biological Chemistry.

[28]  F. Ross,et al.  Use of Cells Expressing γ Subunit Variants to Identify Diverse Mechanisms of AMPK Activation , 2010, Cell metabolism.

[29]  W. Kaelin,et al.  Q&A: Cancer: Clues from cell metabolism , 2010, Nature.

[30]  R. Rossignol,et al.  Multi-site control and regulation of mitochondrial energy production. , 2010, Biochimica et biophysica acta.

[31]  R. Rodenburg,et al.  Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level. , 2010, Developmental disabilities research reviews.

[32]  Cindy E J Dieteren,et al.  Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. , 2010, Antioxidants & redox signaling.

[33]  A. Means,et al.  Faculty Opinions recommendation of Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. , 2010 .

[34]  N. Ruderman,et al.  AMPK and SIRT1: a long-standing partnership? , 2010, American journal of physiology. Endocrinology and metabolism.

[35]  V. Mootha,et al.  Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis , 2010, Nature Biotechnology.

[36]  Jun Xu,et al.  Oligomycin-induced Bioenergetic Adaptation in Cancer Cells with Heterogeneous Bioenergetic Organization , 2010, The Journal of Biological Chemistry.

[37]  F. Ross,et al.  Use of Cells Expressing gamma Subunit Variants to Identify Diverse Mechanisms of AMPK Activation , 2010 .

[38]  N. Chandel,et al.  Mitochondrial Metabolism and Cancer , 2009, Annals of the New York Academy of Sciences.

[39]  O. Shirihai,et al.  Mitochondrial Networking Protects β-Cells From Nutrient-Induced Apoptosis , 2009, Diabetes.

[40]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[41]  R. Rodenburg,et al.  Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. , 2008, Brain : a journal of neurology.

[42]  V. Ganapathy,et al.  Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. , 2009, Pharmacology & therapeutics.

[43]  B. Corkey,et al.  Mitochondrial Networking Protects Beta Cells from Nutrient Induced Apoptosis , 2009 .

[44]  A. Garnier,et al.  Mitochondrial biogenesis in cardiac pathophysiology , 2009, Pharmacological reports : PR.

[45]  Werner J H Koopman,et al.  Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. , 2008, Methods.

[46]  L. Goodyear,et al.  AMP-activated protein kinase in skeletal muscle: From structure and localization to its role as a master regulator of cellular metabolism , 2008, Cellular and Molecular Life Sciences.

[47]  J. Smeitink,et al.  Mitochondrial Ca2+ homeostasis in human NADH:ubiquinone oxidoreductase deficiency. , 2008, Cell calcium.

[48]  Michael S Janes,et al.  The selective detection of mitochondrial superoxide by live cell imaging , 2008, Nature Protocols.

[49]  J. Fransen,et al.  Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria. , 2008, American journal of physiology. Cell physiology.

[50]  W. Watt,et al.  Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. , 2008, Cell metabolism.

[51]  W. Graier,et al.  Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport , 2007, Nature Cell Biology.

[52]  J. Smeitink,et al.  Mitochondrial and cytosolic thiol redox state are not detectably altered in isolated human NADH:ubiquinone oxidoreductase deficiency. , 2007, Biochimica et biophysica acta.

[53]  J. Smeitink,et al.  Partial complex I inhibition decreases mitochondrial motility and increases matrix protein diffusion as revealed by fluorescence correlation spectroscopy. , 2007, Biochimica et biophysica acta.

[54]  J. Smeitink,et al.  Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? , 2007, American journal of physiology. Cell physiology.

[55]  J. Smeitink,et al.  Superoxide production is inversely related to complex I activity in inherited complex I deficiency. , 2007, Biochimica et biophysica acta.

[56]  Michael S Janes,et al.  Selective fluorescent imaging of superoxide in vivo using ethidium-based probes , 2006, Proceedings of the National Academy of Sciences.

[57]  B. Robinson Lactic acidemia and mitochondrial disease. , 2006, Molecular genetics and metabolism.

[58]  Dimphy Zeegers,et al.  Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency. , 2006, American journal of physiology. Cell physiology.

[59]  W. Zwerschke,et al.  Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts , 2006, Experimental Gerontology.

[60]  B. Viollet,et al.  5′-AMP-Activated Protein Kinase (AMPK) Is Induced by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor Microenvironments , 2006, Molecular and Cellular Biology.

[61]  N. Romero,et al.  Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation. , 2006, Brain : a journal of neurology.

[62]  James M. Roberts,et al.  A New Description of Cellular Quiescence , 2006, PLoS biology.

[63]  J. Smeitink,et al.  Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. , 2005, American journal of physiology. Cell physiology.

[64]  F. H. van der Westhuizen,et al.  Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth. , 2005, American journal of physiology. Cell physiology.

[65]  T. Pandita,et al.  Manganese Superoxide Dismutase Protects the Proliferative Capacity of Confluent Normal Human Fibroblasts* , 2005, Journal of Biological Chemistry.

[66]  R. Wanders,et al.  Detection of respiratory chain dysfunction by measuring lactate and pyruvate production in cultured fibroblasts , 1990, Journal of Inherited Metabolic Disease.

[67]  G. Rutter,et al.  Inhibition of Mitochondrial Na (cid:1) -Ca 2 (cid:1) Exchange Restores Agonist-induced ATP Production and Ca 2 (cid:1) Handling in Human Complex I Deficiency* , 2004 .

[68]  Rodrigue Rossignol,et al.  Energy Substrate Modulates Mitochondrial Structure and Oxidative Capacity in Cancer Cells , 2004, Cancer Research.

[69]  A. Matsuno-Yagi,et al.  Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[70]  C. Nathan,et al.  Secretion of pyruvate. An antioxidant defense of mammalian cells , 1987, The Journal of experimental medicine.

[71]  B. Robinson,et al.  Glucose transport and metabolism in cultured human skin fibroblasts. , 1983, Biochimica et biophysica acta.

[72]  L. Reitzer,et al.  Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. , 1979, The Journal of biological chemistry.

[73]  I. Scheffler,et al.  Energy metabolism in respiration‐deficient and wild type chinese hamster fibroblasts in culture , 1976, Journal of cellular physiology.

[74]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.