Emulation to simulate low-resolution atmospheric data
暂无分享,去创建一个
[1] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[2] D. Klocke,et al. Tuning the climate of a global model , 2012 .
[3] M. J. D. Powell,et al. Radial basis functions for multivariable interpolation: a review , 1987 .
[4] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[5] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[6] G. Danabasoglu,et al. The Community Climate System Model Version 4 , 2011 .
[7] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] F. Molteni. Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments , 2003 .
[9] Rick Archibald,et al. Characterizing the elements of Earth's radiative budget: Applying uncertainty quantification to the CESM , 2012, ICCS.
[10] F. Molteni,et al. Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation , 2005 .
[11] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[12] W. Collins,et al. Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .
[13] James C McWilliams,et al. Considerations for parameter optimization and sensitivity in climate models , 2010, Proceedings of the National Academy of Sciences.
[14] R. Ghanem. Hybrid Stochastic Finite Elements and Generalized Monte Carlo Simulation , 1998 .
[15] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[16] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[17] B. Ripley,et al. Pattern Recognition , 1968, Nature.