Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR

It is accepted that the ligand shell morphology of nanoparticles coated with a monolayer of molecules can be partly responsible for important properties such as cell membrane penetration and wetting. When binary mixtures of molecules coat a nanoparticle, they can arrange randomly or separate into domains, for example, forming Janus, patchy or striped particles. To date, there is no straightforward method for the determination of such structures. Here we show that a combination of one-dimensional and two-dimensional NMR can be used to determine the ligand shell structure of a series of particles covered with aliphatic and aromatic ligands of varying composition. This approach is a powerful way to determine the ligand shell structure of patchy particles; it has the limitation of needing a whole series of compositions and ligands' combinations with NMR peaks well separated and whose shifts due to the surrounding environment can be large enough.

[1]  M. Lafleur,et al.  Contribution of the Intermolecular Coupling and Librotorsional Mobility in the Methylene Stretching Modes in the Infrared Spectra of Acyl Chains , 1994 .

[2]  R. Murray,et al.  Water-Soluble, Isolable Gold Clusters Protected by Tiopronin and Coenzyme A Monolayers , 1999 .

[3]  Francesco Stellacci,et al.  Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. , 2008, Nature materials.

[4]  J. McLean,et al.  Nanoscale phase segregation of mixed thiolates on gold nanoparticles. , 2011, Angewandte Chemie.

[5]  S. Glotzer,et al.  Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. , 2007, Physical review letters.

[6]  F. Stellacci,et al.  Effect of Ligand Shell Structure on the Interaction between Monolayer-Protected Gold Nanoparticles , 2008 .

[7]  Charles S. Johnson,et al.  NMR Diffusion, Relaxation, and Spectroscopic Studies of Water Soluble, Monolayer-Protected Gold Nanoclusters† , 2001 .

[8]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[9]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[10]  Shaowei Chen,et al.  Janus nanoparticles: reaction dynamics and NOESY characterization , 2009 .

[11]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[12]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[13]  F. Mancin,et al.  Lanthanide-based NMR: a tool to investigate component distribution in mixed-monolayer-protected nanoparticles. , 2012, Journal of the American Chemical Society.

[14]  K. Klymko,et al.  Free energy of alternating two-component polymer brushes on cylindrical templates. , 2011, The Journal of chemical physics.

[15]  James E. Hutchison,et al.  Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters , 1995 .

[16]  E. Sanz,et al.  Phase diagram of a tetrahedral patchy particle model for different interaction ranges , 2010 .

[17]  R. Kumar,et al.  Effect of composition on the catalytic properties of mixed-ligand-coated gold nanoparticles. , 2011, Angewandte Chemie.

[18]  M. Stevens,et al.  Hybrid nanoparticle-liposome detection of phospholipase activity. , 2011, Nano letters.

[19]  F. Stellacci,et al.  Chains of Superparamagnetic Nanoparticles , 2008 .

[20]  F. Mancin,et al.  Mapping the nanoparticle-coating monolayer with NMR pseudocontact shifts. , 2012, Chemical communications.

[21]  S. Glotzer,et al.  Size limitations for the formation of ordered striped nanoparticles. , 2008, Journal of the American Chemical Society.

[22]  M. Lucarini,et al.  ESR spectroscopy as a tool to investigate the properties of self-assembled monolayers protecting gold nanoparticles. , 2010, Nanoscale.

[23]  F. Sciortino,et al.  Phase diagram of Janus particles. , 2009, Physical review letters.

[24]  A. Basu,et al.  Core functionalization of hollow polymer nanocapsules. , 2009, Journal of the American Chemical Society.

[25]  F. Stellacci,et al.  Synthesis and Characterization of Janus Gold Nanoparticles , 2012, Advanced materials.

[26]  Vincent M. Rotello,et al.  The biomacromolecule-nanoparticle interface , 2007 .

[27]  Francesco Stellacci,et al.  Divalent Metal Nanoparticles , 2007, Science.

[28]  S. Glotzer,et al.  The effect of nanometre-scale structure on interfacial energy. , 2009, Nature materials.

[29]  Vincent M. Rotello,et al.  Applications of Nanoparticles in Biology , 2008 .

[30]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[31]  L. J. Prins,et al.  Assessment of the morphology of mixed SAMs on Au nanoparticles using a fluorescent probe. , 2011, Chemical communications.

[32]  Francesco Stellacci,et al.  Water-soluble amphiphilic gold nanoparticles with structured ligand shells. , 2008, Chemical communications.

[33]  S. Glotzer,et al.  Striped nanowires and nanorods from mixed SAMS. , 2011, Nanoscale.

[34]  N. Zheng,et al.  One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. , 2006, Journal of the American Chemical Society.

[35]  F. Stellacci,et al.  Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles. , 2012, ACS nano.

[36]  L. Demers,et al.  Structure and Chain Dynamics of Alkanethiol-Capped Gold Colloids , 1996 .

[37]  Francesco Stellacci,et al.  From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. , 2006, Journal of the American Chemical Society.

[38]  R. Murray,et al.  Ligand heterogeneity on monolayer-protected gold clusters. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[39]  S. Bell,et al.  Modification of Ag nanoparticles with mixed thiols for improved SERS detection of poorly adsorbing target molecules: detection of MDMA. , 2011, Chemical communications.

[40]  J. Perry,et al.  Excited-state dynamics and dye-dye interactions in dye-coated gold nanoparticles with varying alkyl spacer lengths. , 2010, Physical chemistry chemical physics : PCCP.

[41]  A. Jackson,et al.  The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles , 2008, Proceedings of the National Academy of Sciences.

[42]  Brahim Lounis,et al.  Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging. , 2011, ACS nano.

[43]  F. Stellacci,et al.  Thermodynamic Study of the Reactivity of the Two Topological Point Defects Present in Mixed Self‐Assembled Monolayers on Gold Nanoparticles , 2008 .

[44]  A. Jackson,et al.  Phase separation on mixed-monolayer-protected metal nanoparticles: a study by infrared spectroscopy and scanning tunneling microscopy. , 2007, Small.

[45]  P. Scrimin,et al.  Carboxylate-imidazole cooperativity in dipeptide-functionalized gold nanoparticles with esterase-like activity. , 2005, Journal of the American Chemical Society.

[46]  S. Chen,et al.  Janus Nanoparticles by Interfacial Engineering , 2007 .

[47]  F. Stellacci,et al.  Mixed-ligand nanoparticles as supramolecular receptors. , 2011, Small.

[48]  Yoram Cohen,et al.  Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter--new insights. , 2005, Angewandte Chemie.