Adaptive Bayesian multiuser detection for synchronous CDMA with Gaussian and impulsive noise

We consider the problem of simultaneous parameter estimation and data restoration in a synchronous CDMA system in the presence of either additive Gaussian or additive impulsive white noise with unknown parameters. The impulsive noise is modeled by a two-term Gaussian mixture distribution. Bayesian inference of all unknown quantities is made from the superimposed and noisy received signals. The Gibbs sampler (a Markov chain Monte Carlo procedure) is employed to calculate the Bayesian estimates. The basic idea is to generate ergodic random samples from the joint posterior distribution of all unknown and then to average the appropriate samples to obtain the estimates of the unknown quantities. Adaptive Bayesian multiuser detectors based on the Gibbs sampler are derived for both the Gaussian noise synchronous CDMA channel and the impulsive noise synchronous CDMA channel. A salient feature of the proposed adaptive Bayesian multiuser detectors is that they can incorporate the a priori symbol probabilities, and they produce as output the a posteriori symbol probabilities. (That is, they are "soft-input soft-output" algorithms.) Hence, these methods are well suited for iterative processing in a coded system, which allows the adaptive Bayesian multiuser detector to refine its processing based on the information from the decoding stage, and vice versa-a receiver structure termed the adaptive turbo multiuser detector.

[1]  Stephen G. Wilson,et al.  Multiuser ML sequence estimator for convolutionally coded asynchronous DS-CDMA systems , 1996, IEEE Trans. Commun..

[2]  G. R. Wilson,et al.  Nonlinear and non-Gaussian ocean noise , 1986 .

[3]  David Middleton,et al.  Non-Gaussian Noise Models in Signal Processing for Telecommunications: New Methods and Results for Class A and Class B Noise Models , 1999, IEEE Trans. Inf. Theory.

[4]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[5]  H. Vincent Poor,et al.  Iterative (turbo) soft interference cancellation and decoding for coded CDMA , 1999, IEEE Trans. Commun..

[6]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[7]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[8]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[9]  Mario Tanda,et al.  An Analysis of Some Multiuser Detectors in Impulsive Noise , 1997 .

[10]  H. Vincent Poor,et al.  Performance of DS/SSMA communications in impulsive channels. II. Hard-limiting correlation receivers , 1988, IEEE Trans. Commun..

[11]  B. Carlin,et al.  On the Convergence of Successive Substitution Sampling , 1992 .

[12]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[13]  Ronald A. Iltis An EKF-based joint estimator for interference, multipath, and code delay in a DS spread-spectrum receiver , 1994, IEEE Trans. Commun..

[14]  Theodore S. Rappaport,et al.  Measurements and simulation of radio frequency impulsive noise in hospitals and clinics , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[15]  Craig K. Rushforth,et al.  Parameter estimation in a multi-user communication system , 1994, IEEE Trans. Commun..

[16]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[17]  David Middleton,et al.  Statistical-Physical Models of Electromagnetic Interference , 1977, IEEE Transactions on Electromagnetic Compatibility.

[18]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[19]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[20]  Joachim Hagenauer,et al.  The turbo principle-tutorial introduction and state of the art , 1997 .

[21]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  H. Vincent Poor,et al.  Robust multiuser detection in non-Gaussian channels , 1999, IEEE Trans. Signal Process..

[23]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[24]  Ronald A. Iltis,et al.  An adaptive multiuser detector with joint amplitude and delay estimation , 1994, IEEE J. Sel. Areas Commun..

[25]  W H Wong,et al.  Dynamic weighting in Monte Carlo and optimization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Vincent Poor On parameter estimation in DS/SSMA formats , 1989 .

[27]  Paul D. Alexander,et al.  Iterative multiuser detection for CDMA with FEC: near-single-user performance , 1998, IEEE Trans. Commun..

[28]  Kung-Sik Chan Asymptotic behavior of the Gibbs sampler , 1993 .

[29]  H. Vincent Poor,et al.  Efficient estimation of Class A noise parameters via the EM algorithm , 1991, IEEE Trans. Inf. Theory.

[30]  D. Middleton,et al.  Man-Made Noise in Urban Environments and Transportation Systems: Models and Measurements , 1973, IEEE Trans. Commun..

[31]  Behnaam Aazhang,et al.  A multiuser receiver for code division multiple access communications over multipath channels , 1995, IEEE Trans. Commun..

[32]  Michael Moher,et al.  An iterative multiuser decoder for near-capacity communications , 1998, IEEE Trans. Commun..

[33]  H. Vincent Poor,et al.  An analysis of nonlinear direct-sequence correlators , 1989, IEEE Trans. Commun..

[34]  Craig K. Rushforth,et al.  Joint signal detection and parameter estimation in multiuser communications , 1993, IEEE Trans. Commun..

[35]  Steven F. Arnold 18 Gibbs sampling , 1993, Computational Statistics.

[36]  H. Vincent Poor,et al.  Performance of DS/SSMA Communications in Impulsive Channels - Part I: Linear Correlation Receivers , 1986, IEEE Transactions on Communications.

[37]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[38]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[39]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[40]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[41]  Stephen G. Wilson,et al.  Suboptimum multiuser receivers for convolutionally coded asynchronous DS-CDMA systems , 1996, IEEE Trans. Commun..

[42]  D. Middleton,et al.  Channel Modeling and Threshold Signal Processing in Underwater Acoustics: An Analytical Overview , 1987 .

[43]  Theodore S. Rappaport,et al.  Measurements and Models of Radio Frequency Impulsive Noise for Indoor Wireless Communications , 1993, IEEE J. Sel. Areas Commun..

[44]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[45]  Yossef Steinberg,et al.  Sequential amplitude estimation in multiuser communications , 1994, IEEE Trans. Inf. Theory.

[46]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .