Nanoparticle PEBBLE sensors in live cells and in vivo.

Nanoparticle sensors have been developed for real-time imaging and dynamic monitoring, both in live cells and in vivo, of molecular and ionic components, constructs, forces, and dynamics observed during biological, chemical, and physical processes. With their biocompatible small size and inert matrix, nanoparticle sensors have been successfully applied to noninvasive real-time measurements of analytes and fields in cells and in rodents, with spatial, temporal, physical, and chemical resolution. This review describes the diverse designs of nanoparticle sensors for ions and small molecules, physical fields, and biological features, as well as the characterization, properties, and applications of these nanosensors to in vitro and in vivo measurements. Their floating as well as localization abilities in biological media are captured by the acronym PEBBLE: photonic explorer for bioanalysis with biologically localized embedding.

[1]  Samuel I. Miller,et al.  Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. , 2005, Molecular biology of the cell.

[2]  Thommey P. Thomas,et al.  Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. , 2007, Biomacromolecules.

[3]  P. Bühlmann,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. , 1998, Chemical reviews.

[4]  H. Clark,et al.  Fluorescent ion-selective nanosensors for intracellular analysis with improved lifetime and size. , 2007, Nano letters.

[5]  Michael R. Shortreed,et al.  Development of a fluorescent optical potassium-selective ion sensor with ratiometric response for intracellular applications , 1997 .

[6]  Raoul Kopelman,et al.  Aspherical magnetically modulated optical nanoprobes (MagMOONs) , 2003 .

[7]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[8]  E. Groisman,et al.  Mg2+ as an Extracellular Signal: Environmental Regulation of Salmonella Virulence , 1996, Cell.

[9]  Hong Gu,et al.  Fluorescent gel particles in the nanometer range for detection of metabolites in living cells , 2006 .

[10]  B. Ross,et al.  Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy , 2007 .

[11]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[12]  Hiroshi Masuhara,et al.  Three-Dimensional pH Microprobing with an Optically-Manipulated Fluorescent Particle , 1996 .

[13]  David E Benson,et al.  A modular nanoparticle-based system for reagentless small molecule biosensing. , 2005, Journal of the American Chemical Society.

[14]  R. Weissleder,et al.  Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging , 2002, European Radiology.

[15]  Raoul Kopelman,et al.  Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors , 2006, Clinical Cancer Research.

[16]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[17]  Zhiliang Cheng,et al.  Nanometre-sized molecular oxygen sensors prepared from polymer stabilized phospholipid vesicles. , 2006, The Analyst.

[18]  Joseph Wang,et al.  Point-of-care biosensor systems for cancer diagnostics/prognostics. , 2006, Biosensors & bioelectronics.

[19]  M Sugisaka,et al.  Nanotechnology on duty in medical applications. , 2005, Current pharmaceutical biotechnology.

[20]  Raoul Kopelman,et al.  Magnetically controlled sensor swarms , 2007 .

[21]  M. Shortreed,et al.  Miniature sodium-selective ion-exchange optode with fluorescent pH chromoionophores and tunable dynamic range. , 1996, Analytical chemistry.

[22]  H. Clark,et al.  Optochemical Nanosensors and Subcellular Applications in Living Cells , 1999 .

[23]  L. Prodi,et al.  Fluorescence quenching amplification in silica nanosensors for metal ions , 2005 .

[24]  E. Rampazzo,et al.  A Fluorescence Nanosensor for Cu2+ on Silica Particles. , 2004 .

[25]  E. Hall,et al.  K+-selective nanospheres: maximising response range and minimising response time. , 2006, The Analyst.

[26]  Ingo Klimant,et al.  An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. , 2005, Biophysical journal.

[27]  Caleb J. Behrend,et al.  Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. , 2003, Analytical chemistry.

[28]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[29]  R. Pansu,et al.  Fluorescent nanoparticles as selective Cu(ii) sensors , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[30]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[31]  Raoul Kopelman,et al.  Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. , 2004, Analytical chemistry.

[32]  Chih-Ching Huang,et al.  Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution. , 2006, Analytical chemistry.

[33]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[34]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Raoul Kopelman,et al.  Magnetically modulated optical nanoprobes , 2003 .

[36]  V. Yadavalli,et al.  Encapsulation of enzymes within polymer spheres to create optical nanosensors for oxidative stress. , 2005, Analytical chemistry.

[37]  R. Kopelman,et al.  Near-field optics: imaging single molecules. , 1993, Science.

[38]  Raoul Kopelman,et al.  Alexa Fluor 488 as an iron sensing molecule and its application in PEBBLE nanosensors. , 2005, The Analyst.

[39]  H. Clark,et al.  Ion-selective nano-optodes incorporating quantum dots. , 2007, Journal of the American Chemical Society.

[40]  David E Benson,et al.  Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles. , 2006, The Analyst.

[41]  Raoul Kopelman,et al.  Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging. , 2002, The Analyst.

[42]  Robert Pansu,et al.  Metal-chelating nanoparticles as selective fluorescent sensor for Cu2+. , 2004, Chemical communications.

[43]  Raoul Kopelman,et al.  Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. , 2004, Current opinion in chemical biology.

[44]  Shuming Nie,et al.  Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. , 2006, Nanomedicine.

[45]  H. Clark,et al.  Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. , 1999, Analytical chemistry.

[46]  M. Shortreed,et al.  Anion-selective liquid-polymer optodes with fluorescent pH chromoionophores, tunable dynamic range and diffusion enhanced lifetimes , 1996 .

[47]  Raoul Kopelman,et al.  "Nanosized voltmeter" enables cellular-wide electric field mapping. , 2007, Biophysical journal.

[48]  R. Kopelman,et al.  Development of a hydroxyl radical ratiometric nanoprobe , 2003 .

[49]  R. Kopelman,et al.  Physiochemical microparticle sensors based on nonlinear magnetic oscillations , 2007 .

[50]  R. Haugland The Handbook: A Guide to Fluorescent Probes and Labeling Technologies , 2005 .

[51]  Raoul Kopelman,et al.  Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. , 2004, The Analyst.

[52]  A. Welch,et al.  A review of the optical properties of biological tissues , 1990 .

[53]  Eric Monson,et al.  Use of steady-state fluorescence anisotropy with pebble nanosensors for chemical analysis , 2002, SPIE BiOS.

[54]  Nicholas O Fischer,et al.  Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms. , 2007, The Analyst.

[55]  H. Clark,et al.  Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. , 1999, Analytical chemistry.

[56]  E. Rampazzo,et al.  Surface modification of silica nanoparticles: a new strategy for the realization of self-organized fluorescence chemosensors , 2005 .

[57]  L. Olsen,et al.  Horseradish peroxidase embedded in polyacrylamide nanoparticles enables optical detection of reactive oxygen species. , 2007, Analytical biochemistry.

[58]  R. Leblanc,et al.  Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I). , 2003, Chemical communications.

[59]  Barry L. Mordike,et al.  Distribution of Ion-Implanted Nitrogen in Iron Alloys Investigated by AES , 2000, Microchimica Acta.

[60]  R. Kopelman,et al.  Ratiometric Singlet Oxygen Nano-optodes and Their Use for Monitoring Photodynamic Therapy Nanoplatforms , 2005, Photochemistry and photobiology.

[61]  Y. Li,et al.  Gold Nanoparticle‐Based Fluorometric and Colorimetric Sensing of Copper(II) Ions , 2005 .

[62]  B. R. Johnson,et al.  All-optical nanoscale pH meter. , 2006, Nano letters.

[63]  M. Mcshane,et al.  Nanoscale internally referenced oxygen sensors produced from self-assembled nanofilms on fluorescent nanoparticles. , 2005, Journal of biomedical optics.

[64]  Caleb J. Behrend,et al.  Brownian modulated optical nanoprobes , 2004 .

[65]  E. Rampazzo,et al.  Turning fluorescent dyes into Cu(II) nanosensors. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[66]  Raoul Kopelman,et al.  Ion concentrations in live cells from highly selective ion correlation fluorescent nano-sensors for sodium , 2002, Proceedings of IEEE Sensors.

[67]  Heather A. Clark,et al.  Novel optical biosensors using a gold colloid monolayer substrate , 2000, Photonics West - Biomedical Optics.

[68]  R. Weissleder,et al.  Multivalent effects of RGD peptides obtained by nanoparticle display. , 2006, Journal of medicinal chemistry.

[69]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[70]  M. Philbert,et al.  Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. , 2001, Analytical chemistry.

[71]  Jeffrey N. Anker,et al.  Microrheology with modulated optical nanoprobes (MOONs) , 2005 .

[72]  Raoul Kopelman,et al.  Brain cancer diagnosis and therapy with nanoplatforms. , 2006, Advanced drug delivery reviews.

[73]  Z. Rosenzweig,et al.  Luminescent CdS quantum dots as selective ion probes. , 2002, Analytical chemistry.

[74]  D. Delpy,et al.  Quantification in tissue near–infrared spectroscopy , 1997 .

[75]  E. Reynolds,et al.  Introduction to a Discussion on Near-infrared spectroscopy and imaging of living systems. , 1997 .

[76]  Honghao Sun,et al.  Phosphate sensing by fluorescent reporter proteins embedded in polyacrylamide nanoparticles. , 2008, ACS nano.

[77]  Ingo Klimant,et al.  Monitoring hormone-induced oxygen consumption in the salivary glands of the blowfly, Calliphora vicina, by use of luminescent microbeads , 2006 .

[78]  Thomas Huser,et al.  Intracellular pH sensors based on surface-enhanced raman scattering. , 2004, Analytical chemistry.

[79]  W. R. Taylor,et al.  In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. , 2007, Nature materials.

[80]  Rebecca Richards-Kortum,et al.  Plasmonic nanosensors for imaging intracellular biomarkers in live cells. , 2007, Nano letters.

[81]  Raoul Kopelman,et al.  A fluorescent PEBBLE nanosensor for intracellular free zinc. , 2002, The Analyst.

[82]  J. Aylott,et al.  A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. , 2001, Analytical chemistry.

[83]  Lin He,et al.  Nanoparticles for bioanalysis. , 2003, Current opinion in chemical biology.

[84]  B M Cullum,et al.  The development of optical nanosensors for biological measurements. , 2000, Trends in biotechnology.

[85]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[86]  A. Jasanoff,et al.  Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin , 2006, Proceedings of the National Academy of Sciences.

[87]  M. Philbert,et al.  Liquid polymer nano-PEBBLEs for Cl- analysis and biological applications. , 2003, The Analyst.

[88]  M. Mcshane,et al.  Core-referenced ratiometric fluorescent potassium ion sensors using self-assembled ultrathin films on europium nanoparticles , 2005, IEEE Sensors Journal.

[89]  A. Bush,et al.  Metals and neuroscience. , 2000, Current opinion in chemical biology.

[90]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[91]  Carol A. Fierke,et al.  Cu+- and Cu2+-sensitive PEBBLE fluorescent nanosensors using DsRed as the recognition element , 2006 .

[92]  Andrew G Ewing,et al.  Analysis of Mammalian Cell Cytoplasm with Electrophoresis in Nanometer Inner Diameter Capillaries. , 2005, Electroanalysis.

[93]  Susan L. R. Barker,et al.  Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs) , 1998 .

[94]  H. Maeda The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. , 2001, Advances in enzyme regulation.

[95]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.