FLINT : Fast library for number theory

Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

[1]  William B. Hart A ONE LINE FACTORING ALGORITHM , 2012, Journal of the Australian Mathematical Society.

[2]  Thom Mulders On Short Multiplications and Divisions , 2000, Applicable Algebra in Engineering, Communication and Computing.

[3]  Niels Moller,et al.  Improved Division by Invariant Integers , 2011, IEEE Transactions on Computers.

[4]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[5]  Mark Watkins,et al.  Congruent Number Theta Coefficients to 1012 , 2010, ANTS.

[6]  Ellis Horowitz,et al.  Algorithms for rational function arithmetic operations , 1972, STOC.

[7]  Mark van Hoeij,et al.  Practical polynomial factoring in polynomial time , 2011, ISSAC '11.

[8]  Donald E. Knuth,et al.  Notes on generalized Dedekind sums , 1977 .

[9]  Samuel S. Wagstaff,et al.  Square form factorization , 2008, Math. Comput..

[10]  Doron Zeilberger The J.C.P. miller recurrence for exponentiating a polynomial, and its q- analog * , 1995 .

[11]  D. H. Lehmer,et al.  IRREGULAR PRIMES TO ONE MILLION , 1992 .

[12]  Peter R. Turner,et al.  Fraction-free algorithms for linear and polynomial equations , 1997, SIGS.

[13]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[14]  Albert Leon Whiteman,et al.  A SUM CONNECTED WITH THE SERIES FOR THE PARTITION FUNCTION , 1956 .

[15]  Jean-Pierre Massias,et al.  Bornes effectives pour certaines fonctions concernant les nombres premiers , 1996 .

[16]  Pierre Dusart,et al.  The kth prime is greater than k(ln k + ln ln k - 1) for k >= 2 , 1999, Math. Comput..

[17]  C. Caldwell Mathematics of Computation , 1999 .

[18]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[19]  Peter Henrici A Subroutine for Computations with Rational Numbers , 1956, JACM.

[20]  Hugh C. Williams,et al.  Some results on pseudosquares , 1996, Math. Comput..

[21]  David Harvey,et al.  Irregular primes to 163 million , 1992, Math. Comput..

[22]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .