Maximizing Ag Utilization in High-Rate CO2 Electrochemical Reduction with a Coordination Polymer-Mediated Gas Diffusion Electrode

We report the preparation and electrocatalytic performance of silver-containing gas diffusion electrodes (GDEs) derived from a silver coordination polymer (Ag-CP). Layer-by-layer growth of the Ag-C...

[1]  F. Kapteijn,et al.  Engineering Metal-Organic Frameworks for the Electrochemical Reduction of CO2: A Mini-review. , 2019, Chemistry, an Asian journal.

[2]  T. Jaramillo,et al.  Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm , 2018, ACS Energy Letters.

[3]  F. P. García de Arquer,et al.  High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media , 2018, ACS Energy Letters.

[4]  Wilson A. Smith,et al.  In Situ Fabrication and Reactivation of Highly Selective and Stable Ag Catalysts for Electrochemical CO2 Conversion , 2018, ACS energy letters.

[5]  F. Kapteijn,et al.  Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction. , 2018, ACS applied materials & interfaces.

[6]  Danielle A. Salvatore,et al.  Electrolytic CO2 Reduction in a Flow Cell. , 2018, Accounts of chemical research.

[7]  C. Xiang,et al.  High-Rate Electrochemical Reduction of Carbon Monoxide to Ethylene Using Cu-Nanoparticle-Based Gas Diffusion Electrodes , 2018 .

[8]  T. Fujigaya,et al.  Insights into the Low Overpotential Electroreduction of CO2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer , 2018 .

[9]  S. Karakalos,et al.  Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO2 Electrochemical Reduction to CO. , 2018, ACS applied materials & interfaces.

[10]  Guenter Schmid,et al.  Technical photosynthesis involving CO2 electrolysis and fermentation , 2018, Nature Catalysis.

[11]  F. Kapteijn,et al.  Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes , 2018 .

[12]  F. Kapteijn,et al.  Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework , 2017, Nature Communications.

[13]  T. Fujigaya,et al.  Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO2. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  J. Rossmeisl,et al.  Enhanced Carbon Dioxide Electroreduction to Carbon Monoxide over Defect-Rich Plasma-Activated Silver Catalysts. , 2017, Angewandte Chemie.

[15]  Ferenc Darvas,et al.  Continuous-flow electroreduction of carbon dioxide , 2017 .

[16]  P. Kenis,et al.  Carbon Foam Decorated with Silver Nanoparticles for Electrochemical CO2 Conversion , 2017 .

[17]  F. Kapteijn,et al.  Metal–Organic Framework Mediated Cobalt/Nitrogen‐Doped Carbon Hybrids as Efficient and Chemoselective Catalysts for the Hydrogenation of Nitroarenes , 2017 .

[18]  Paul J A Kenis,et al.  A Nitrogen-Doped Carbon Catalyst for Electrochemical CO2 Conversion to CO with High Selectivity and Current Density. , 2017, ChemSusChem.

[19]  Jingli Luo,et al.  Shape-Dependent Electrocatalytic Reduction of CO2 to CO on Triangular Silver Nanoplates. , 2017, Journal of the American Chemical Society.

[20]  R. Amal,et al.  Highly Selective Conversion of CO2 to CO Achieved by a Three-Dimensional Porous Silver Electrocatalyst , 2017 .

[21]  Angel Irabien,et al.  Electrochemical membrane reactors for the utilisation of carbon dioxide , 2016 .

[22]  F. Jiao,et al.  Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering , 2016 .

[23]  Wilson A. Smith,et al.  Efficient Electrochemical Production of Syngas from CO2 and H2O by using a Nanostructured Ag/g‐C3N4 Catalyst , 2016 .

[24]  Wilson A. Smith,et al.  Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts. , 2016, Angewandte Chemie.

[25]  S. Woo,et al.  Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. , 2016, Angewandte Chemie.

[26]  Ibram Ganesh,et al.  Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization , 2016 .

[27]  Paul J. A. Kenis,et al.  Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO , 2016 .

[28]  A. Altomare,et al.  EXPO software for solving crystal structures by powder diffraction data: methods and application , 2015 .

[29]  D. Vlachos,et al.  Mechanistic Insights into the Electrochemical Reduction of CO2 to CO on Nanostructured Ag Surfaces , 2015 .

[30]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[31]  J. Greeley,et al.  Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. , 2014, Journal of the American Chemical Society.

[32]  G. Ning,et al.  Silver carboxylate metal-organic frameworks with highly antibacterial activity and biocompatibility. , 2014, Journal of inorganic biochemistry.

[33]  Mohammad Reza Rahimpour,et al.  Hydrogenation of CO2 to value-added products—A review and potential future developments , 2014 .

[34]  Sichao Ma,et al.  Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. , 2014, ChemSusChem.

[35]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[36]  Paul J. A. Kenis,et al.  Efficient Electrochemical Flow System with Improved Anode for the Conversion of CO2 to CO , 2014 .

[37]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[38]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[39]  Fikile R. Brushett,et al.  The Effects of Catalyst Layer Deposition Methodology on Electrode Performance , 2013 .

[40]  Jingjie Wu,et al.  Electrochemical Reduction of Carbon Dioxide II. Design, Assembly, and Performance of Low Temperature Full Electrochemical Cells , 2013 .

[41]  Sichao Ma,et al.  Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. , 2012, Journal of the American Chemical Society.

[42]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[43]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[44]  Zhenpeng Hu,et al.  CO2 methanation on Ru-doped ceria , 2011 .

[45]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[46]  Rongjun Zhang,et al.  Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods , 2004 .

[47]  H. Schwarz,et al.  Reduction potentials of CO2- and the alcohol radicals , 1989 .

[48]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[49]  Katsuhei Kikuchi,et al.  Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. , 1985 .