A new partially reduced-bias mean-of-order p class of extreme value index estimators
暂无分享,去创建一个
M. Ivette Gomes | M. Fátima Brilhante | Frederico Caeiro | Dinis D. Pestana | Frederico Caeiro | M. Gomes | D. Pestana | M. F. Brilhante
[1] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[2] Piet Groeneboom,et al. Kernel-type estimators for the extreme value index , 2003 .
[3] James P. Hughes,et al. Computing the observed information in the hidden Markov model using the EM algorithm , 1997 .
[4] Laurens de Haan,et al. On maximum likelihood estimation of the extreme value index , 2004, math/0407062.
[5] Cécile Mercadier,et al. Semi-parametric estimation for heavy tailed distributions , 2010 .
[6] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[7] M. Gomes,et al. Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions , 2008 .
[8] M. Ivette Gomes,et al. Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .
[9] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[10] M. Ivette Gomes,et al. IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .
[11] M. Ivette Gomes,et al. A simple generalisation of the Hill estimator , 2013, Comput. Stat. Data Anal..
[12] M. Ivette Gomes,et al. Extreme Value Theory and Statistics of Univariate Extremes: A Review , 2015 .
[13] M. Ivette Gomes,et al. Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .
[14] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[15] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[16] Frederico Caeiro,et al. A new class of estimators of a “scale” second order parameter , 2007 .
[17] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[18] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[19] George Kingsley Zipf,et al. National Unity and Disunity , 1943 .
[20] Liang Peng,et al. Review of testing issues in extremes: in honor of Professor Laurens de Haan , 2008 .
[21] M. Gomes,et al. Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling , 2013 .
[22] M. Ivette Gomes,et al. Mixed moment estimator and location invariant alternatives , 2009 .
[23] Hogeschool-Universiteit Brussel,et al. GENERALIZED SUM PLOTS , 2011 .
[24] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[25] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[26] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[27] Anthony C. Davison,et al. Modelling Excesses over High Thresholds, with an Application , 1984 .
[28] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[29] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[30] Laurens de Haan,et al. Slow Variation and Characterization of Domains of Attraction , 1984 .
[31] R. Reiss,et al. Statistical Analysis of Extreme Values-with applications to insurance , 1997 .
[32] L. Haan,et al. Bias correction in extreme value statistics with index around zero , 2013 .
[33] Jan Beirlant,et al. Kernel estimators for the second order parameter in extreme value statistics , 2010 .
[34] Liang Peng,et al. Asymptotically unbiased estimators for the extreme-value index , 1998 .
[35] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[36] Jan Beirlant,et al. LINKING PARETO-TAIL KERNEL GOODNESS-OF-FIT STATISTICS WITH TAIL INDEX AT OPTIMAL THRESHOLD AND SECOND ORDER ESTIMATION , 2008 .
[37] Frederico Caeiro,et al. Revisiting the Maximum Likelihood Estimation of a Positive Extreme Value Index , 2015 .
[38] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[39] Paul Deheuvels,et al. Kernel Estimates of the Tail Index of a Distribution , 1985 .
[40] S. Girard,et al. On the estimation of the second order parameter for heavy-tailed distributions , 2013 .
[41] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[42] George Michailidis,et al. A Diagnostic Plot for Estimating the Tail Index of a Distribution , 2004 .
[43] M. Gomes,et al. Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .
[44] E. J. Gumbel,et al. Statistics of Extremes. , 1960 .
[45] Frederico Caeiro,et al. Asymptotic comparison at optimal levels of reduced‐bias extreme value index estimators , 2011 .
[46] J. Teugels,et al. Statistics of Extremes , 2004 .
[47] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[48] M. Ivette Gomes,et al. New Reduced-bias Estimators of a Positive Extreme Value Index , 2016, Commun. Stat. Simul. Comput..
[49] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[50] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[51] Frederico Caeiro,et al. A Semi-parametric Estimator of a Shape Second-Order Parameter , 2014 .
[52] M. Ivette Gomes,et al. Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .
[53] Modeling Extreme Events: Sample Fraction Adaptive Choice in Parameter Estimation , 2015 .
[54] M. Ivette Gomes,et al. Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .
[55] Michael Thomas,et al. Statistical Analysis of Extreme Values , 2008 .
[56] Jan Beirlant,et al. Estimation of the extreme-value index and generalized quantile plots , 2005 .