Invariant polytopes of linear operators with applications to regularity of wavelets and of subdivisions

We generalize the recent invariant polytope algorithm for computing the joint spectral radius and extend it to a wider class of matrix sets. This, in particular, makes the algorithm applicable to sets of matrices that have finitely many spectrum maximizing products. A criterion of convergence of the algorithm is proved. As an application we solve two challenging computational open problems. First we find the regularity of the Butterfly subdivision scheme for various parameters $\omega$. In the "most regular" case $\omega = \frac{1}{16}$, we prove that the limit function has Holder exponent $2$ and its derivative is "almost Lipschitz" with logarithmic factor $2$. Second we compute the Holder exponent of Daubechies wavelets of high order.

[1]  T. Andô,et al.  Simultaneous Contractibility , 1998 .

[2]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[3]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[4]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[5]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[6]  Владимир Юрьевич Протасов,et al.  Фрактальные кривые и всплески@@@Fractal curves and wavelets , 2006 .

[7]  Nira Dyn,et al.  Optimising 3D Triangulations: Improving the Initial Triangulation for the Butterfly Subdivision Scheme , 2005, Advances in Multiresolution for Geometric Modelling.

[8]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[9]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[10]  A. Cicone A note on the Joint Spectral Radius , 2015, 1502.01506.

[11]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[12]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[13]  N. S. Barnett,et al.  Private communication , 1969 .

[14]  U. Reif,et al.  C1-continuity of the generalized four-point scheme , 2009 .

[15]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[16]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[17]  V. Protasov The generalized joint spectral radius. A geometric approach , 1997 .

[18]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[19]  U. Reif,et al.  A tree-based approach to joint spectral radius determination , 2014 .

[20]  John N. Tsitsiklis,et al.  Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard , 2000, IEEE Trans. Autom. Control..

[21]  Vincent D. Blondel,et al.  Joint Spectral Characteristics of Matrices: A Conic Programming Approach , 2010, SIAM J. Matrix Anal. Appl..

[22]  Carla Manni,et al.  Convergence analysis of C2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas , 2011 .

[23]  Thierry BLUzAbstract SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .

[24]  P. Cifuentes,et al.  Characterization of scaling functions in a multiresolution analysis , 2004 .

[25]  Y. Nesterov,et al.  On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .

[26]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[27]  A. Jadbabaie,et al.  Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.

[28]  I. Daubechies,et al.  A new technique to estimate the regularity of refinable functions , 1996 .

[29]  Nicola Guglielmi,et al.  On the asymptotic properties of a family of matrices , 2001 .

[30]  D. Levin,et al.  Normals of the butterfly subdivision scheme surfaces and their applications , 1999 .

[31]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[32]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[33]  M. Zennaro,et al.  Balanced Complex Polytopes and Related Vector and Matrix Norms , 2007 .