Invariant polytopes of linear operators with applications to regularity of wavelets and of subdivisions
暂无分享,去创建一个
[1] T. Andô,et al. Simultaneous Contractibility , 1998 .
[2] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[3] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[4] J. Tsitsiklis,et al. The boundedness of all products of a pair of matrices is undecidable , 2000 .
[5] S. Dubuc. Interpolation through an iterative scheme , 1986 .
[6] Владимир Юрьевич Протасов,et al. Фрактальные кривые и всплески@@@Fractal curves and wavelets , 2006 .
[7] Nira Dyn,et al. Optimising 3D Triangulations: Improving the Initial Triangulation for the Butterfly Subdivision Scheme , 2005, Advances in Multiresolution for Geometric Modelling.
[8] Yang Wang,et al. Bounded semigroups of matrices , 1992 .
[9] L. Elsner. The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .
[10] A. Cicone. A note on the Joint Spectral Radius , 2015, 1502.01506.
[11] Fabian R. Wirth,et al. Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..
[12] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[13] N. S. Barnett,et al. Private communication , 1969 .
[14] U. Reif,et al. C1-continuity of the generalized four-point scheme , 2009 .
[15] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[16] R. Jungers. The Joint Spectral Radius: Theory and Applications , 2009 .
[17] V. Protasov. The generalized joint spectral radius. A geometric approach , 1997 .
[18] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[19] U. Reif,et al. A tree-based approach to joint spectral radius determination , 2014 .
[20] John N. Tsitsiklis,et al. Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard , 2000, IEEE Trans. Autom. Control..
[21] Vincent D. Blondel,et al. Joint Spectral Characteristics of Matrices: A Conic Programming Approach , 2010, SIAM J. Matrix Anal. Appl..
[22] Carla Manni,et al. Convergence analysis of C2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas , 2011 .
[23] Thierry BLUzAbstract. SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .
[24] P. Cifuentes,et al. Characterization of scaling functions in a multiresolution analysis , 2004 .
[25] Y. Nesterov,et al. On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .
[26] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[27] A. Jadbabaie,et al. Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.
[28] I. Daubechies,et al. A new technique to estimate the regularity of refinable functions , 1996 .
[29] Nicola Guglielmi,et al. On the asymptotic properties of a family of matrices , 2001 .
[30] D. Levin,et al. Normals of the butterfly subdivision scheme surfaces and their applications , 1999 .
[31] G. Gripenberg. COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .
[32] Vincent D. Blondel,et al. Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..
[33] M. Zennaro,et al. Balanced Complex Polytopes and Related Vector and Matrix Norms , 2007 .