A simple statistical analysis of wavelet-based multifractal spectrum estimation

The multifractal spectrum characterizes the scaling and singularity structures of signals and proves useful in numerous applications, from network traffic analysis to turbulence. Of great concern is the estimation of the spectrum from a finite data record. We derive asymptotic expressions for the bias and variance of a wavelet-based estimator for a fractional Brownian motion (fBm) process. Numerous numerical simulations demonstrate the accuracy and utility of our results.

[1]  Patrick Flandrin,et al.  Scaling exponents estimation from time-scale energy distributions , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[3]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[4]  Walter Willinger,et al.  On the Self-Similar Nature of Ethernet Traffic ( extended version ) , 1995 .

[5]  P. Abry,et al.  Wavelets, spectrum analysis and 1/ f processes , 1995 .

[6]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[7]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[8]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[9]  Murad S. Taqqu,et al.  On the Self-Similar Nature of Ethernet Traffic , 1993, SIGCOMM.

[10]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[11]  S. Jaffard Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .

[12]  Richard G. Baraniuk,et al.  A Multifractal Wavelet Model with Application to Network Traffic , 1999, IEEE Trans. Inf. Theory.

[13]  K. Chung,et al.  Limit Distributions for Sums of Independent Random Variables. , 1955 .

[14]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[15]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[16]  R. Ellis,et al.  LARGE DEVIATIONS FOR A GENERAL-CLASS OF RANDOM VECTORS , 1984 .