Microtube‐Membrane Methodology for Electrochemical Synthesis and Study of Electroactive and Ionically Conductive Materials, and the Conductivity of MnO 2

[1]  R. Ruoff,et al.  Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO2 for High-Performance Asymmetric Supercapacitors. , 2018, ACS nano.

[2]  C. R. Martin,et al.  The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes. , 2018, Small.

[3]  C. R. Martin,et al.  From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes , 2017, Nanomaterials.

[4]  C. R. Martin,et al.  Rearranging the Nernst equation to make a dosage-controllable membrane delivery system , 2017 .

[5]  Y. Liu,et al.  Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization , 2017 .

[6]  D. Losic,et al.  Morphology-controlled MnO2 modified silicon diatoms for high-performance asymmetric supercapacitors , 2017 .

[7]  S. Pedersen,et al.  Bipolar electrochemistry—A wireless approach for electrode reactions , 2017 .

[8]  Chenguo Hu,et al.  A novel β-MnO2 micro/nanorod arrays directly grown on flexible carbon fiber fabric for high-performance enzymeless glucose sensing , 2017 .

[9]  R. Valiev,et al.  Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching , 2017, Nanomaterials.

[10]  A. G. Wilson,et al.  Low-Voltage Flow-Through Electroporation in Gold-Microtube Membranes. , 2016, Analytical chemistry.

[11]  Richard M. Crooks,et al.  Principles of Bipolar Electrochemistry , 2016 .

[12]  M. Minakshi,et al.  Electrolytic manganese dioxide (EMD): a perspective on worldwide production, reserves and its role in electrochemistry , 2015 .

[13]  Eleanor I. Gillette,et al.  Ionic conductivity of a single porous MnO2 mesorod at controlled oxidation states , 2015 .

[14]  R. Penner,et al.  In Situ Electrical Conductivity of LixMnO2 Nanowires as a Function of x and Size , 2015 .

[15]  Kai Zhang,et al.  Nanostructured Mn-based oxides for electrochemical energy storage and conversion. , 2015, Chemical Society reviews.

[16]  Jian Zhu,et al.  Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors. , 2014, ACS applied materials & interfaces.

[17]  C. R. Martin,et al.  Voltage charging enhances ionic conductivity in gold nanotube membranes. , 2014, ACS nano.

[18]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[19]  Eleanor I. Gillette,et al.  Probing Porous Structure of Single Manganese Oxide Mesorods with Ionic Current , 2013 .

[20]  Neso Sojic,et al.  Bipolar electrochemistry: from materials science to motion and beyond. , 2013, Accounts of chemical research.

[21]  Alexander Kuhn,et al.  True Bulk Synthesis of Janus Objects by Bipolar Electrochemistry , 2012, Advanced materials.

[22]  R. Penner,et al.  Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. , 2011, ACS nano.

[23]  Yi Cui,et al.  Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. , 2011, Nano letters.

[24]  Mao-wen Xu,et al.  Nanostructured MnO2 for Electrochemical Capacitor , 2011 .

[25]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[26]  Curtis Shannon,et al.  Display of solid-state materials using bipolar electrochemistry. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[27]  Bin Wang,et al.  Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors , 2009 .

[28]  J. Shapter,et al.  Gold nanotube membranes functionalised with fluorinated thiols for selective molecular transport , 2009 .

[29]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[30]  Thierry Brousse,et al.  Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte , 2008 .

[31]  G. Hefter,et al.  Ion association and hydration in aqueous solutions of LiCl and Li2SO4 by dielectric spectroscopy. , 2007, The journal of physical chemistry. B.

[32]  D. Guyomard,et al.  Electrochemical synthesis of new substituted manganese oxides for lithium battery applications , 2006 .

[33]  Jun Chen,et al.  Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. , 2006, Inorganic chemistry.

[34]  Mainak Majumder,et al.  Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. , 2005, Journal of the American Chemical Society.

[35]  Philippe Déjardin,et al.  Streaming potential in cylindrical pores of poly(ethylene terephthalate) track-etched membranes: variation of apparent zeta potential with pore radius. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[36]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[37]  Z. Siwy,et al.  A nanodevice for rectification and pumping ions , 2004 .

[38]  L. Binder,et al.  Effects of direct and pulse current on electrodeposition of manganese dioxide , 2002 .

[39]  Mathieu Toupin,et al.  Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide , 2002 .

[40]  P. Apel,et al.  Track etching technique in membrane technology , 2001 .

[41]  K. Jirage,et al.  Investigations of the Transport Properties of Gold Nanotubule Membranes , 2001 .

[42]  M. Anderson,et al.  Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films , 2000 .

[43]  M. Chigane,et al.  Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism , 2000 .

[44]  M. Stranick MnO2 by XPS , 1999 .

[45]  C. Trautmann,et al.  Track size and track structure in polymer irradiated by heavy ions , 1998 .

[46]  Charles R. Martin,et al.  Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures , 1997 .

[47]  Charles R. Martin,et al.  Nanotubule-Based Molecular-Filtration Membranes , 1997 .

[48]  Mártin,et al.  Thermopower and high-pressure electrical conductivity measurements of template synthesized polypyrrole. , 1996, Physical review. B, Condensed matter.

[49]  C. Lampert,et al.  Electrochemical lithium insertion in sol-gel deposited LiNbO3 films , 1995 .

[50]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[51]  Charles R. Martin,et al.  FABRICATION AND EVALUATION OF NANOELECTRODE ENSEMBLES , 1995 .

[52]  U. Guth,et al.  Mixed conductive electrode materials for sensors and SOFC , 1995 .

[53]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[54]  P. Rouxhet,et al.  Analysis of Poly(Ethylene Terephthalate) (PET) by XPS , 1994 .

[55]  C. Julien,et al.  Transport properties of lithium-intercalated MoO3 , 1994 .

[56]  J. Newman Resistance for Flow of Current to a Disk , 1966 .

[57]  Chenguo Hu,et al.  Approaching the lithium-manganese oxides' energy storage limit with Li2MnO3 nanorods for high-performance supercapacitor , 2018 .

[58]  Richard M Crooks,et al.  Bipolar electrochemistry. , 2013, Angewandte Chemie.

[59]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[60]  Allen J. Bard,et al.  Electroanalytical Chemistry: A Series of Advances , 1974 .