[Ophthalmological imaging with ultrahigh field magnetic resonance tomography: technical innovations and frontier applications].

This review documents technical progress in ophthalmic magnetic resonance imaging (MRI) at ultrahigh fields (UHF, B(0) ≥ 7.0 T). The review surveys frontier applications of UHF-MRI tailored for high spatial resolution in vivo imaging of the eye, orbit and optic nerve. Early examples of clinical ophthalmic UHF-MRI including the assessment of melanoma of the choroid membrane and the characterisation of intraocular masses are demonstrated. A concluding section ventures a glance beyond the horizon and explores research promises along with future directions of ophthalmic UHF-MRI.

[1]  Thoralf Niendorf,et al.  Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla , 2013, PloS one.

[2]  Thoralf Niendorf,et al.  High Spatial Resolution and Temporally Resolved T2 * Mapping of Normal Human Myocardium at 7.0 Tesla: An Ultrahigh Field Magnetic Resonance Feasibility Study , 2012, PloS one.

[3]  F. Garaci,et al.  Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. , 2012, Investigative ophthalmology & visual science.

[4]  N. Hosten,et al.  Retinoblastoma—MR appearance using a surface coil in comparison with histopathological results , 2006, European Radiology.

[5]  Thoralf Niendorf,et al.  Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises , 2010, European Radiology.

[6]  Thoralf Niendorf,et al.  Progress and promises of human cardiac magnetic resonance at ultrahigh fields: a physics perspective. , 2013, Journal of magnetic resonance.

[7]  F. Paul,et al.  [Ultrahigh field MRI in context of neurological diseases]. , 2014, Der Nervenarzt.

[8]  Thoralf Niendorf,et al.  Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study , 2013, Multiple sclerosis.

[9]  N. Hosten,et al.  High resolution magnetic resonance imaging of retinoblastoma , 2003, The British journal of ophthalmology.

[10]  E. Ringelstein,et al.  Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis , 2012, Multiple sclerosis.

[11]  Thoralf Niendorf,et al.  Two‐Dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: Design, evaluation, and application , 2012, Journal of magnetic resonance imaging : JMRI.

[12]  B. Hamm,et al.  Diffusion-Weighted Imaging of Ocular Melanoma , 2013, Investigative radiology.

[13]  Andrew G Webb,et al.  Magnetic resonance compatibility of intraocular lenses measured at 7 Tesla. , 2012, Investigative ophthalmology & visual science.

[14]  Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T , 2014, Journal of Neurology.

[15]  Thoralf Niendorf,et al.  Design and application of a four‐channel transmit/receive surface coil for functional cardiac imaging at 7T , 2011, Journal of magnetic resonance imaging : JMRI.

[16]  Thoralf Niendorf,et al.  Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. , 2013, European journal of radiology.

[17]  B. Stoel,et al.  Automated retinal topographic maps measured with magnetic resonance imaging. , 2015, Investigative ophthalmology & visual science.

[18]  Y. Anzai,et al.  Orbital neoplasms in adults: clinical, radiologic, and pathologic review. , 2013, Radiographics : a review publication of the Radiological Society of North America, Inc.

[19]  S. Patz,et al.  T1 and T2 measurements of the fine structures of the in vivo and enucleated human eye , 2007, Journal of magnetic resonance imaging : JMRI.

[20]  S. Strenk,et al.  Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters , 2006, Journal of cataract and refractive surgery.

[21]  S. Patz,et al.  High-resolution MR imaging of the human eye 2005. , 2006, Academic radiology.

[22]  Thoralf Niendorf,et al.  Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla , 2013, Journal of Cardiovascular Magnetic Resonance.

[23]  J. Villablanca,et al.  Diffusion-Weighted Imaging of Malignant Ocular Masses: Initial Results and Directions for Further Study , 2012, American Journal of Neuroradiology.

[24]  T. Duong,et al.  Blood flow MRI of the human retina/choroid during rest and isometric exercise. , 2012, Investigative ophthalmology & visual science.

[25]  C. Pfueller,et al.  Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study. , 2012, Archives of neurology.

[26]  R. Zivadinov,et al.  Conventional and Advanced Imaging in Neuromyelitis Optica , 2014, American Journal of Neuroradiology.

[27]  Yi Zhang,et al.  Lamina-specific anatomic magnetic resonance imaging of the human retina. , 2011, Investigative ophthalmology & visual science.

[28]  N. Hosten,et al.  High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. , 2014, Experimental Eye Research.

[29]  A. Webb,et al.  High‐resolution MRI of uveal melanoma using a microcoil phased array at 7 T , 2013, NMR in biomedicine.

[30]  Thoralf Niendorf,et al.  Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging , 2014, Magnetic resonance in medicine.

[31]  T. Niendorf,et al.  Characterization of Phase-Based Methods Used for Transmission Field Uniformity Mapping: A Magnetic Resonance Study at 3.0 T and 7.0 T , 2013, PloS one.

[32]  Petra Schmalbrock,et al.  7 Tesla MR imaging of the human eye in vivo , 2009, Journal of magnetic resonance imaging : JMRI.

[33]  J. R. Long,et al.  Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. , 2005, Journal of magnetic resonance.

[34]  M. Bird,et al.  New hybrid magnet system for structure research at highest magnetic fields and temperatures in the millikelvin region , 2012 .

[35]  Thoralf Niendorf,et al.  Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla , 2014, PloS one.

[36]  Thoralf Niendorf,et al.  Feasibility of k-t BLAST For BOLD fMRI With a Spin-Echo Based Acquisition at 3 T and 7 T , 2009, Investigative radiology.

[37]  Y. Yasuno,et al.  Relationship between changes in crystalline lens shape and axial elongation in young children. , 2013, Investigative ophthalmology & visual science.

[38]  J. Schulz-Menger,et al.  Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study , 2012, PloS one.

[39]  Thoralf Niendorf,et al.  Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging , 2012, European Radiology.

[40]  Thoralf Niendorf,et al.  Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study , 2012, PloS one.

[41]  C. Pfueller,et al.  Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis , 2012, Neurology.

[42]  F. Paul,et al.  Identical lesion morphology in primary progressive and relapsing–remitting MS –an ultrahigh field MRI study , 2014, Multiple sclerosis.

[43]  Thoralf Niendorf,et al.  Ophthalmic Magnetic Resonance Imaging at 7 T Using a 6-Channel Transceiver Radiofrequency Coil Array in Healthy Subjects and Patients With Intraocular Masses , 2014, Investigative radiology.

[44]  Peter Boesiger,et al.  Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope , 2009, Investigative radiology.

[45]  Thoralf Niendorf,et al.  Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study , 2010, European Radiology.

[46]  M. Shapiro,et al.  Retinoblastoma and simulating lesions: role of imaging. , 2005, Neuroimaging clinics of North America.

[47]  Thoralf Niendorf,et al.  Modular 32‐channel transceiver coil array for cardiac MRI at 7.0T , 2014, Magnetic resonance in medicine.

[48]  V. Positano,et al.  Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T , 2014, Magnetic resonance in medicine.

[49]  K. Bockhorst,et al.  Accuracy and resolution of in vitro imaging based porcine lens volumetric measurements. , 2011, Experimental eye research.

[50]  P. Fonio,et al.  Orbital fractures: role of imaging. , 2012, Seminars in ultrasound, CT, and MR.

[51]  T. Niendorf,et al.  In-vivo-Magnetresonanzmikroskopie des humanen Auges In Vivo MR Microscopy of the Human Eye , 2014 .

[52]  T. Niendorf,et al.  Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit – a hybrid tool for assessment of choroidal melanoma , 2014, European Radiology.

[53]  S. Ansari,et al.  Anatomy and pathology of the eye: role of MR imaging and CT. , 2006, Neuroimaging clinics of North America.

[54]  A. Malhotra,et al.  Ocular anatomy and cross-sectional imaging of the eye. , 2011, Seminars in ultrasound, CT, and MR.

[55]  Thoralf Niendorf,et al.  Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla , 2010, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.