Flavors of Compressive Sensing

About a decade ago, a couple of groundbreaking articles revealed the possibility of faithfully recovering high-dimensional signals from some seemingly incomplete information about them. Perhaps more importantly, practical procedures to perform the recovery were also provided. These realizations had a tremendous impact in science and engineering. They gave rise to a field called ‘compressive sensing,’ which is now in a mature state and whose foundations rely on an elegant mathematical theory. This survey presents an overview of the field, accentuating elements from approximation theory, but also highlighting connections with other disciplines that have enriched the theory, e.g., statistics, sampling theory, probability, optimization, metagenomics, graph theory, frame theory, and Banach space geometry.

[1]  Ming-Jun Lai,et al.  Sparse recovery with pre-Gaussian random matrices , 2010 .

[2]  Hoang Tran,et al.  Polynomial approximation via compressed sensing of high-dimensional functions on lower sets , 2016, Math. Comput..

[3]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[4]  M. Talagrand Selecting a proportion of characters , 1998 .

[5]  Rayan Saab,et al.  One-Bit Compressive Sensing With Norm Estimation , 2014, IEEE Transactions on Information Theory.

[6]  B. S. Kašin,et al.  DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS , 1977 .

[7]  Simon Foucart,et al.  Stability and Robustness of Weak Orthogonal Matching Pursuits , 2012 .

[8]  Jan Vybíral,et al.  Widths of embeddings in function spaces , 2008, J. Complex..

[9]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[10]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[11]  Holger Rauhut,et al.  The Gelfand widths of lp-balls for 0p<=1 , 2010, J. Complex..

[12]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[13]  Anru Zhang,et al.  Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices , 2013, IEEE Transactions on Information Theory.

[14]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[15]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[16]  N. J. A. Sloane,et al.  Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.

[17]  Andrej Yu. Garnaev,et al.  On widths of the Euclidean Ball , 1984 .

[18]  Simon Foucart,et al.  Sparse disjointed recovery from noninflating measurements , 2015 .

[19]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[20]  Yang Wang,et al.  Robust sparse phase retrieval made easy , 2014, 1410.5295.

[21]  R. DeVore,et al.  Orthogonal Matching Pursuit Under the Restricted Isometry Property , 2015, Constructive Approximation.

[22]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[23]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[24]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[25]  S. Foucart Stability and robustness of ℓ1-minimizations with Weibull matrices and redundant dictionaries , 2014 .

[26]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[27]  Deanna Needell,et al.  Signal Space CoSaMP for Sparse Recovery With Redundant Dictionaries , 2012, IEEE Transactions on Information Theory.

[28]  R. Adamczak,et al.  Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling , 2009, 0904.4723.

[29]  Peter Bro Miltersen,et al.  Are bitvectors optimal? , 2000, STOC '00.

[30]  Richard G. Baraniuk,et al.  One-Bit Compressive Sensing of Dictionary-Sparse Signals , 2016, ArXiv.

[31]  Gail L. Rosen,et al.  Quikr: a method for rapid reconstruction of bacterial communities via compressive sensing , 2013, Bioinform..

[32]  Dmitriy Bilyk,et al.  Random Tessellations, Restricted Isometric Embeddings, and One Bit Sensing , 2015, ArXiv.

[33]  Rémi Gribonval,et al.  Projection Onto The k-Cosparse Set is NP-Hard , 2013, ArXiv.

[34]  Xiaodong Li,et al.  Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns , 2012, Found. Comput. Math..

[35]  Rayan Saab,et al.  Sigma delta quantization for compressed sensing , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[36]  Marc E. Pfetsch,et al.  The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing , 2012, IEEE Transactions on Information Theory.

[37]  Yaniv Plan,et al.  One‐Bit Compressed Sensing by Linear Programming , 2011, ArXiv.

[38]  David L. Donoho,et al.  Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Shahar Mendelson,et al.  The Geometry of Random {-1,1}-Polytopes , 2005, Discret. Comput. Geom..

[40]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[41]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[42]  Simon Foucart Dictionary-Sparse Recovery via Thresholding-Based Algorithms , 2016 .

[43]  Restricted Isometry Constants where p sparse , 2011 .

[44]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[45]  G. Schechtman Two observations regarding embedding subsets of Euclidean spaces in normed spaces , 2006 .

[46]  Stephen J. Dilworth,et al.  Explicit constructions of RIP matrices and related problems , 2010, ArXiv.

[47]  Richard G. Baraniuk,et al.  1-Bit compressive sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[48]  Guillaume Lecué,et al.  An IHT Algorithm for Sparse Recovery From Subexponential Measurements , 2017, IEEE Signal Processing Letters.

[49]  Holger Rauhut,et al.  The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.

[50]  Dustin G. Mixon,et al.  Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.

[51]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[52]  Rémi Gribonval,et al.  Restricted Isometry Constants Where $\ell ^{p}$ Sparse Recovery Can Fail for $0≪ p \leq 1$ , 2009, IEEE Transactions on Information Theory.

[53]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[54]  Vladimir Temlyakov,et al.  CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .

[55]  S. Foucart,et al.  Hard thresholding pursuit algorithms: Number of iterations ☆ , 2016 .

[56]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[57]  J. Bourgain Bounded orthogonal systems and the Λ(p)-set problem , 1989 .

[58]  Yaniv Plan,et al.  Robust 1-bit Compressed Sensing and Sparse Logistic Regression: A Convex Programming Approach , 2012, IEEE Transactions on Information Theory.

[59]  Simon Foucart,et al.  Sparse Recovery by Means of Nonnegative Least Squares , 2014, IEEE Signal Processing Letters.

[60]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[61]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[62]  Prateek Jain,et al.  Universal Matrix Completion , 2014, ICML.

[63]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[64]  Joel A. Tropp,et al.  Living on the edge: phase transitions in convex programs with random data , 2013, 1303.6672.

[65]  Richard G. Baraniuk,et al.  Exponential Decay of Reconstruction Error From Binary Measurements of Sparse Signals , 2014, IEEE Transactions on Information Theory.

[66]  S. Mendelson,et al.  Compressed sensing under weak moment assumptions , 2014, 1401.2188.

[67]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[68]  Rémi Gribonval,et al.  Real versus complex null space properties for sparse vector recovery , 2010 .

[69]  Nathan Linial,et al.  How Neighborly Can a Centrally Symmetric Polytope Be? , 2006, Discret. Comput. Geom..

[70]  Simon Foucart,et al.  WGSQuikr: Fast Whole-Genome Shotgun Metagenomic Classification , 2014, PloS one.

[71]  A. Pinkus n-Widths in Approximation Theory , 1985 .