Dynamics of exploding plasmas in a large magnetized plasma

The dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma was investigated with magnetic flux probes and Langmuir probes. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (>20 cm) diamagnetic cavity. We observe a field compression of up to B/B0=1.5 as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston and swept outside the bubble volume. Nonlinear shear-Alfven waves (δB/B0>25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave.

[1]  C. Niemann,et al.  Feasibility of characterizing laser-ablated carbon plasmas via planar laser induced fluorescence. , 2012, The Review of scientific instruments.

[2]  C. Niemann,et al.  Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston , 2012 .

[3]  C. Niemann,et al.  Magnetic field measurements in low density plasmas using paramagnetic Faraday rotator glass. , 2012, The Review of scientific instruments.

[4]  Dan Winske,et al.  High-energy Nd:glass laser facility for collisionless laboratory astrophysics , 2012 .

[5]  C. Niemann,et al.  Thomson Scattering Measurements of Temperature and Density in a Low-Density, Laser-Driven Magnetized Plasma , 2011 .

[6]  K. A. Flippo,et al.  Collisionless Shocks in a Large Magnetized Laser-Plasma Plume , 2011, IEEE Transactions on Plasma Science.

[7]  W. Gekelman,et al.  The many faces of shear Alfvén wavesa) , 2011 .

[8]  D. Larson,et al.  The physics of ion decoupling in magnetized plasma expansions , 2011 .

[9]  W. Gekelman,et al.  Structure of an exploding laser-produced plasma. , 2010, Physical review letters.

[10]  C. Niemann,et al.  A scalable multipass laser cavity based on injection by frequency conversion for noncollective Thomson scattering. , 2010, The Review of scientific instruments.

[11]  W. Gekelman,et al.  A new large area lanthanum hexaboride plasma source. , 2010, The Review of scientific instruments.

[12]  C. Niemann,et al.  Ion velocity distribution measurements in a magnetized laser plasma expansion , 2010 .

[13]  U. Helmersson,et al.  Faster-than-Bohm cross-B electron transport in strongly pulsed plasmas. , 2009, Physical review letters.

[14]  C. Niemann,et al.  Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas. , 2009, The Review of scientific instruments.

[15]  C. Niemann,et al.  Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma , 2009 .

[16]  W. Gekelman,et al.  Quasielectrostatic whistler wave radiation from the hot electron emission of a laser-produced plasma , 2008 .

[17]  S. Gary,et al.  Hybrid simulations of debris-ambient ion interactions in astrophysical explosions , 2007 .

[18]  W. Gekelman,et al.  Three-dimensional current systems generated by plasmas colliding in a background magnetoplasma , 2007 .

[19]  P. Dyal Particle and field measurements of the Starfish diamagnetic cavity , 2006 .

[20]  W. Gekelman,et al.  Generation of suprathermal electrons and Alfvén waves by a high power pulse at the electron plasma frequency , 2006 .

[21]  J. F. Mckenzie,et al.  Nonlinear inertial and kinetic Alfvèn waves , 2005 .

[22]  P. Pribyl,et al.  Laboratory observation of a nonlinear interaction between shear Alfvén waves. , 2005, Physical review letters.

[23]  N. Brenning,et al.  Conditions for plasmoid penetration across abrupt magnetic barriers , 2004, physics/0410171.

[24]  Y. Zakharov Collisionless laboratory astrophysics with lasers , 2003 .

[25]  W. Gekelman,et al.  Laboratory experiments on Alfven waves caused by rapidly expanding plasmas and their relationship to space phenomena , 2003 .

[26]  W. Gekelman,et al.  Currents and shear Alfvén wave radiation generated by an exploding laser-produced plasma: Perpendicular incidence , 2003 .

[27]  L. Burlaga,et al.  Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998-1999 , 2001 .

[28]  W. Gekelman,et al.  Production of Alfvén waves by a rapidly expanding dense plasma. , 2001, Physical review letters.

[29]  R. White,et al.  Ion heating by fast-particle-induced Alfvén turbulence. , 2001, Physical review letters.

[30]  W. Gekelman,et al.  Experimental measurements of the propagation of large-amplitude shear Alfvén waves , 2000 .

[31]  R. P. Drake The design of laboratory experiments to produce collisionless shocks of cosmic relevance , 2000 .

[32]  A. Ng,et al.  Random Scattering and Anisotropic Turbulence of Shear Alfvén Wave Packets , 2000 .

[33]  W. Gekelman,et al.  Shear Alfven wave radiation from a source with small transverse scale length , 2000 .

[34]  Robert L. Lysak,et al.  Introduction to Space Physics , 1995 .

[35]  E. Mclean,et al.  Sub-Alfvenic plasma expansion , 1993 .

[36]  D. Leneman,et al.  Design, construction, and properties of the large plasma research device : the LAPD at UCLA , 1991 .

[37]  Dimonte,et al.  Dynamics of exploding plasmas in a magnetic field. , 1991, Physical review letters.

[38]  R. Clark,et al.  A model of the pre-Sedov expansion phase of supernova remnant-ambient plasma coupling and X-ray emission from SN 1987A , 1990 .

[39]  D. Winske Development of flute modes on expanding plasma clouds , 1989 .

[40]  P. Bernhardt,et al.  Observations and theory of the AMPTE magnetotail barium releases , 1987 .

[41]  A. Ali,et al.  Magnetic field compression and evolution in laser‐produced plasma expansions , 1986 .

[42]  D. Biskamp Collisionless shock waves in plasmas , 1973 .

[43]  T. Wright Early-Time Model of Laser Plasma Expansion , 1971 .

[44]  M. Keilhacker,et al.  Observation of collisionless plasma heating by strong shock waves , 1969 .

[45]  C. S. Scearce,et al.  Initial results of the imp 1 magnetic field experiment , 1964 .

[46]  N. Brenning,et al.  The role of high frequency oscillations in the penetration of plasma clouds across magnetic boundaries , 2005 .

[47]  R. Ergun,et al.  Alfvén Waves, Density Cavities and Electron Acceleration Observed from the FAST Spacecraft , 2000 .

[48]  L. Stenflo,et al.  Nonlinear Alfvén waves , 1995 .

[49]  Mary A. Norton,et al.  Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction , 1995 .

[50]  F. Wessel,et al.  Plasmoid propagation in a transverse magnetic field and in a magnetized plasma , 1988 .

[51]  Stephen H. Brecht,et al.  Multidimensional simulations using hybrid particles codes , 1988 .

[52]  C. Goodrich,et al.  Collisionless shock formation and the prompt acceleration of solar flare ions , 1988 .

[53]  B. Meyer,et al.  Experimental scaling laws for ablation parameters in plane target–laser interaction with 1.06 μm and 0.35 μm laser wavelengths , 1984 .