Efficient Ma-Free Pb-Sn Alloyed Low-Bandgap Perovskite Solar Cells Via Surface Passivation

[1]  M. A. Kamarudin,et al.  Tin–Lead Perovskite Solar Cells Fabricated on Hole Selective Monolayers , 2022, ACS Energy Letters.

[2]  G. Fang,et al.  Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells via numerical simulations and experiments , 2022, Nano Energy.

[3]  Jia Zhu,et al.  All-perovskite tandem solar cells with improved grain surface passivation , 2022, Nature.

[4]  Yana Vaynzof,et al.  23.7% Efficient inverted perovskite solar cells by dual interfacial modification , 2021, Science advances.

[5]  Feng Yan,et al.  High‐Performance Tin–Lead Mixed‐Perovskite Solar Cells with Vertical Compositional Gradient , 2021, Advanced materials.

[6]  Xiaodong Li,et al.  Lead-lean and MA-free perovskite solar cells with an efficiency over 20% , 2021, Joule.

[7]  R. Murdey,et al.  Mixed lead–tin perovskite films with >7 μs charge carrier lifetimes realized by maltol post-treatment , 2021, Chemical science.

[8]  Xiaodang Zhang,et al.  Modulated Crystallization and Reduced VOC Deficit of Mixed Lead–Tin Perovskite Solar Cells with Antioxidant Caffeic Acid , 2021, ACS Energy Letters.

[9]  Jianghu Liang,et al.  Balancing crystallization rate in a mixed Sn–Pb perovskite film for efficient and stable perovskite solar cells of more than 20% efficiency , 2021, Journal of Materials Chemistry A.

[10]  M. A. Kamarudin,et al.  Tin‐Lead Perovskite Fabricated via Ethylenediamine Interlayer Guides to the Solar Cell Efficiency of 21.74% , 2021, Advanced Energy Materials.

[11]  R. Sporea,et al.  Progress of Pb‐Sn Mixed Perovskites for Photovoltaics: A Review , 2021 .

[12]  Feng Yan,et al.  Recent progress in tin-based perovskite solar cells , 2021 .

[13]  A. Hagfeldt,et al.  Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering , 2021 .

[14]  M. Heben,et al.  Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability , 2020, Nature Energy.

[15]  Zhengshan J. Yu,et al.  Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells , 2020, Nature Energy.

[16]  Oskar J. Sandberg,et al.  On the Origin of the Ideality Factor in Perovskite Solar Cells , 2020, Advanced Energy Materials.

[17]  J. Berry,et al.  Improving Low-Bandgap Tin–Lead Perovskite Solar Cells via Contact Engineering and Gas Quench Processing , 2020 .

[18]  Haiming Zhu,et al.  Realizing High Efficiency over 20% of Low‐Bandgap Pb–Sn‐Alloyed Perovskite Solar Cells by In Situ Reduction of Sn 4+ , 2020 .

[19]  Xingzhu Wang,et al.  Highly Efficient and Stable GABr‐Modified Ideal‐Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small Voc Deficit of 0.33 V , 2020, Advanced materials.

[20]  Andrew H. Proppe,et al.  Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer , 2020, Advanced materials.

[21]  J. Qu,et al.  Growth of Amorphous Passivation Layer Using Phenethylammonium Iodide for High‐Performance Inverted Perovskite Solar Cells , 2020, Solar RRL.

[22]  Joseph J. Berry,et al.  Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability , 2019, Nature Energy.

[23]  Xun Xiao,et al.  Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells , 2019, Nature Communications.

[24]  Jia Zhu,et al.  Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink , 2019, Nature Energy.

[25]  Y. Qi,et al.  Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis , 2019, Journal of Materials Chemistry A.

[26]  D. Di,et al.  Power Conversion Efficiency Enhancement of Low-Bandgap Mixed Pb–Sn Perovskite Solar Cells by Improved Interfacial Charge Transfer , 2019, ACS Energy Letters.

[27]  Dong Hoe Kim,et al.  Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells , 2019, Science.

[28]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[29]  Yanfa Yan,et al.  Low‐Bandgap Mixed Tin‐Lead Perovskites and Their Applications in All‐Perovskite Tandem Solar Cells , 2019, Advanced Functional Materials.

[30]  Nakita K. Noel,et al.  Solution-Processed All-Perovskite Multi-Junction Solar Cells , 2019, Proceedings of the 11th International Conference on Hybrid and Organic Photovoltaics.

[31]  Kai Zhu,et al.  Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers , 2018, Nature Energy.

[32]  Weijian Chen,et al.  Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module , 2018, Nature Communications.

[33]  A. A. Baloch,et al.  Analysis of Photocarrier Dynamics at Interfaces in Perovskite Solar Cells by Time-Resolved Photoluminescence , 2018, The Journal of Physical Chemistry C.

[34]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[35]  M. Heben,et al.  Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry , 2018 .

[36]  Weijian Chen,et al.  Slow Response of Carrier Dynamics in Perovskite Interface upon Illumination. , 2018, ACS applied materials & interfaces.

[37]  Tomas Leijtens,et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors , 2018, Nature Energy.

[38]  Y. Qi,et al.  Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability , 2018 .

[39]  A. Jen,et al.  Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model , 2018, 1801.02941.

[40]  M. Calvo,et al.  ABX3 Perovskites for Tandem Solar Cells , 2017 .

[41]  Henry J. Snaith,et al.  Metal halide perovskite tandem and multiple-junction photovoltaics , 2017 .

[42]  H. Boyen,et al.  Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. , 2017, Journal of the American Chemical Society.

[43]  G. Cui,et al.  Methylammonium-Mediated Evolution of Mixed-Organic-Cation Perovskite Thin Films: A Dynamic Composition-Tuning Process. , 2017, Angewandte Chemie.

[44]  Kai Zhu,et al.  Perovskite ink with wide processing window for scalable high-efficiency solar cells , 2017, Nature Energy.

[45]  J. Chen,et al.  Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. , 2016, ChemSusChem.

[46]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[47]  R. Bube Trap Density Determination by Space‐Charge‐Limited Currents , 1962 .

[48]  Felix Lang,et al.  Influence of Radiation on the Properties and the Stability of Hybrid Perovskites , 2018, Advanced materials.