Computational Topology in Image Context

The Jacobi set is a useful descriptor of mutual behavior of functions defined on a common domain. We introduce the piecewise linear Jacobi set for general vector fields on simplicial complexes. This definition generalizes the definition of the Jacobi set for gradients of functions introduced by Edelsbrunner and Harer.

[1]  Stephen B. Gray,et al.  Local Properties of Binary Images in Two Dimensions , 1971, IEEE Transactions on Computers.

[2]  Xiaojin Zhu,et al.  Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing , 2013, IJCAI.

[3]  Arindam Biswas,et al.  Finding Shortest Triangular Path and its Family inside a Digital Object , 2018, Fundam. Informaticae.

[4]  Vladimir Kovalevsky Geometry of Locally Finite Spaces Computer Agreeable Topology and Algorithms for Computer Imagery , 2008 .

[5]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[6]  Robin Strand,et al.  Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid , 2011, Theor. Comput. Sci..

[7]  J. H. Sossa-Azuela,et al.  Computation of the Euler Number of a Binary Image Composed of Hexagonal Cells , 2010 .

[8]  Gaëlle Largeteau-Skapin,et al.  Characterization and generation of straight line segments on triangular cell grid , 2018, Pattern Recognit. Lett..

[9]  Rocío González-Díaz,et al.  3D well-composed polyhedral complexes , 2015, Discret. Appl. Math..

[10]  Partha Bhowmick,et al.  A linear-time algorithm to compute the triangular hull of a digital object , 2017, Discret. Appl. Math..

[11]  Innchyn Her,et al.  Geometric transformations on the hexagonal grid , 1995, IEEE Trans. Image Process..

[12]  Lidija Comic On Gaps in Digital Objects , 2018, IWCIA.

[13]  Longin Jan Latecki 3D well-composed pictures , 1995, Optics & Photonics.

[14]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[15]  Giorgio Nordo,et al.  A formula for the number of (n-2)-gap in digital n-objects , 2012, ArXiv.

[16]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[17]  M. Gameiro,et al.  A topological measurement of protein compressibility , 2014, Japan Journal of Industrial and Applied Mathematics.

[18]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[19]  Peer Stelldinger,et al.  Topological Equivalence between a 3D Object and the Reconstruction of Its Digital Image , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[21]  HERBERT FREEMAN Algorithm for Generating a Digital Straight Line on a Triangular Grid , 1979, IEEE Transactions on Computers.

[22]  Benedek Nagy Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids , 2014, Annals of Mathematics and Artificial Intelligence.

[23]  James C. Gee,et al.  Topological Repairing of 3D Digital Images , 2008, Journal of Mathematical Imaging and Vision.

[24]  Rocío González-Díaz,et al.  Efficiently Storing Well-Composed Polyhedral Complexes Computed Over 3D Binary Images , 2017, Journal of Mathematical Imaging and Vision.

[25]  Takeshi Shibuya,et al.  A method deciding topological relationship for self-organizing maps by persistent homology analysis , 2016, 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE).

[26]  Péter Kardos,et al.  On topology preservation of mixed operators in triangular, square, and hexagonal grids , 2017, Discret. Appl. Math..

[27]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[28]  Azriel Rosenfeld,et al.  Well-Composed Sets , 1995, Comput. Vis. Image Underst..

[29]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[30]  Paola Magillo,et al.  Repairing 3D binary images using the BCC grid with a 4-valued combinatorial coordinate system , 2019, Inf. Sci..

[31]  Giorgio Nordo,et al.  On 1-gaps in 3D digital objects , 2011 .

[32]  Péter Kardos,et al.  Topology preservation on the triangular grid , 2014, Annals of Mathematics and Artificial Intelligence.

[33]  Ralph Kopperman,et al.  Dimensional properties of graphs and digital spaces , 1996, Journal of Mathematical Imaging and Vision.

[34]  Valentin E. Brimkov,et al.  Genus and Dimension of Digital Images and their Time- and Space-Efficient Computation , 2008, Int. J. Shape Model..

[35]  Arindam Biswas,et al.  Number of Shortest Paths in Triangular Grid for 1- and 2-Neighborhoods , 2015, IWCIA.

[36]  Benedek Nagy,et al.  Dense Projection Tomography on the Triangular Tiling , 2016, Fundam. Informaticae.

[37]  Edward S. Deutsch,et al.  Thinning algorithms on rectangular, hexagonal, and triangular arrays , 1972, Commun. ACM.

[38]  Edward S. Deutsch On Parallel Operations on Hexagonal Arrays , 1970, IEEE Transactions on Computers.

[39]  Wei Zhang,et al.  An Optimized Degree Strategy for Persistent Sensor Network Data Distribution , 2012, 2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing.

[40]  Marcel J. E. Golay,et al.  Hexagonal Parallel Pattern Transformations , 1969, IEEE Transactions on Computers.