Phat - Persistent Homology Algorithms Toolbox
暂无分享,去创建一个
Ulrich Bauer | Michael Kerber | Hubert Wagner | Jan Reininghaus | Michael Kerber | H. Wagner | U. Bauer | Jan Reininghaus | Ulrich Bauer
[1] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[2] R. Forman. Morse Theory for Cell Complexes , 1998 .
[3] Herbert Edelsbrunner,et al. Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[4] Andrei Alexandrescu,et al. Modern C++ design: generic programming and design patterns applied , 2001 .
[5] Alexander Russell,et al. Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..
[6] Afra Zomorodian,et al. Computing Persistent Homology , 2005, Discret. Comput. Geom..
[7] David Cohen-Steiner,et al. Vines and vineyards by updating persistence in linear time , 2006, SCG '06.
[8] Ronald L. Rivest,et al. Introduction to Algorithms, third edition , 2009 .
[9] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[10] Chao Chen,et al. Persistent Homology Computation with a Twist , 2011 .
[11] Dmitriy Morozov,et al. Dualities in persistent (co)homology , 2011, ArXiv.
[12] Primoz Skraba,et al. A spectral sequence for parallelized persistence , 2011, ArXiv.
[13] Ingrid Hotz,et al. Memory-Efficient Computation of Persistent Homology for 3D Images Using Discrete Morse Theory , 2011, 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images.
[14] Primoz Skraba,et al. Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.
[15] Ingrid Hotz,et al. Noname manuscript No. (will be inserted by the editor) Efficient Computation of 3D Morse-Smale Complexes and Persistent Homology using Discrete Morse Theory , 2022 .
[16] Jean-Daniel Boissonnat,et al. The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes , 2012, ESA.
[17] Jean-Daniel Boissonnat,et al. The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology , 2013, ESA.
[18] Chao Chen,et al. An output-sensitive algorithm for persistent homology , 2013, Comput. Geom..
[19] Konstantin Mischaikow,et al. Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..
[20] Afra Zomorodian,et al. Multicore Homology via Mayer Vietoris , 2014, ArXiv.
[21] Ulrich Bauer,et al. Distributed Computation of Persistent Homology , 2014, ALENEX.
[22] Brittany Terese Fasy,et al. Introduction to the R package TDA , 2014, ArXiv.
[23] Gerik Scheuermann,et al. Toward the Extraction of Saddle Periodic Orbits , 2014, Topological Methods in Data Analysis and Visualization.
[24] Mariette Yvinec,et al. The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.
[25] Pawel Dlotko,et al. Towards topological analysis of high-dimensional feature spaces , 2014, Comput. Vis. Image Underst..
[26] Mikael Vejdemo-Johansson,et al. javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.
[27] Ulrich Bauer,et al. Clear and Compress: Computing Persistent Homology in Chunks , 2013, Topological Methods in Data Analysis and Visualization.
[28] H. Edelsbrunner,et al. Persistent Homology — a Survey , 2022 .