Phat - Persistent Homology Algorithms Toolbox

[1]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[2]  R. Forman Morse Theory for Cell Complexes , 1998 .

[3]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[4]  Andrei Alexandrescu,et al.  Modern C++ design: generic programming and design patterns applied , 2001 .

[5]  Alexander Russell,et al.  Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..

[6]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[7]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[8]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[9]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[10]  Chao Chen,et al.  Persistent Homology Computation with a Twist , 2011 .

[11]  Dmitriy Morozov,et al.  Dualities in persistent (co)homology , 2011, ArXiv.

[12]  Primoz Skraba,et al.  A spectral sequence for parallelized persistence , 2011, ArXiv.

[13]  Ingrid Hotz,et al.  Memory-Efficient Computation of Persistent Homology for 3D Images Using Discrete Morse Theory , 2011, 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images.

[14]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[15]  Ingrid Hotz,et al.  Noname manuscript No. (will be inserted by the editor) Efficient Computation of 3D Morse-Smale Complexes and Persistent Homology using Discrete Morse Theory , 2022 .

[16]  Jean-Daniel Boissonnat,et al.  The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes , 2012, ESA.

[17]  Jean-Daniel Boissonnat,et al.  The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology , 2013, ESA.

[18]  Chao Chen,et al.  An output-sensitive algorithm for persistent homology , 2013, Comput. Geom..

[19]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[20]  Afra Zomorodian,et al.  Multicore Homology via Mayer Vietoris , 2014, ArXiv.

[21]  Ulrich Bauer,et al.  Distributed Computation of Persistent Homology , 2014, ALENEX.

[22]  Brittany Terese Fasy,et al.  Introduction to the R package TDA , 2014, ArXiv.

[23]  Gerik Scheuermann,et al.  Toward the Extraction of Saddle Periodic Orbits , 2014, Topological Methods in Data Analysis and Visualization.

[24]  Mariette Yvinec,et al.  The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.

[25]  Pawel Dlotko,et al.  Towards topological analysis of high-dimensional feature spaces , 2014, Comput. Vis. Image Underst..

[26]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[27]  Ulrich Bauer,et al.  Clear and Compress: Computing Persistent Homology in Chunks , 2013, Topological Methods in Data Analysis and Visualization.

[28]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .