An overload behavior detection system for engineering transport vehicles based on deep learning

This paper builds an overloaded truck detect system called ITMD to help traffic department automatically identify the engineering transport vehicles (commonly known as ‘dirt truck’) in CCTV and determine whether the truck is overloaded or not. We build the ITMD system based on the Single Shot MultiBox Detector (SSD) model. By constructing the image dataset of the truck and adjusting hyper-parameters of the original SSD neural network, we successfully trained a basic network model which the ITMD system depends on. The basic ITMD system achieves 83.01% mAP on classifying overload/non-overload truck, which is a not bad result. Still, some shortcomings of basic ITMD system have been targeted to enhance: it is easy for the ITMD system to misclassify other similar vehicle as truck. In response to this problem, we optimized the basic ITMD system, which effectively reduced basic model’s false recognition rate. The optimized ITMD system achieved 86.18% mAP on the test set, which is better than the 83.01% mAP of the basic ITMD system.This paper builds an overloaded truck detect system called ITMD to help traffic department automatically identify the engineering transport vehicles (commonly known as ‘dirt truck’) in CCTV and determine whether the truck is overloaded or not. We build the ITMD system based on the Single Shot MultiBox Detector (SSD) model. By constructing the image dataset of the truck and adjusting hyper-parameters of the original SSD neural network, we successfully trained a basic network model which the ITMD system depends on. The basic ITMD system achieves 83.01% mAP on classifying overload/non-overload truck, which is a not bad result. Still, some shortcomings of basic ITMD system have been targeted to enhance: it is easy for the ITMD system to misclassify other similar vehicle as truck. In response to this problem, we optimized the basic ITMD system, which effectively reduced basic model’s false recognition rate. The optimized ITMD system achieved 86.18% mAP on the test set, which is better than the 83.01% mAP of th...

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Jeff Heaton,et al.  Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning , 2017, Genetic Programming and Evolvable Machines.

[3]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[5]  Sergios Theodoridis,et al.  Neural Networks and Deep Learning , 2020, Machine Learning.

[6]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[8]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.