Lessons from ten years of crystallization experiments at the SGC

Observations are presented from retrospective analyses of the crystallization strategies deployed at the SGC, Oxford during its first decade of existence, providing practical guidelines for the design of screening experiments.

[1]  Sung-Hou Kim,et al.  Sparse matrix sampling: a screening method for crystallization of proteins , 1991 .

[2]  Chaperone salts, polyethylene glycol and rates of equilibration in vapor-diffusion crystallization. , 1995, Acta crystallographica. Section D, Biological crystallography.

[3]  Vapor diffusion, nucleation rates and the reservoir to crystallization volume ratio. , 2002, Acta crystallographica. Section D, Biological crystallography.

[4]  Gyorgy Snell,et al.  The TB structural genomics consortium crystallization facility: towards automation from protein to electron density. , 2002, Acta crystallographica. Section D, Biological crystallography.

[5]  Jan Pieter Abrahams,et al.  The prospects of protein nanocrystallography. , 2002, Acta crystallographica. Section D, Biological crystallography.

[6]  Vapour-diffusion protein crystallization in newly designed pore strips , 2004 .

[7]  Janet Newman,et al.  Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. , 2005, Acta crystallographica. Section D, Biological crystallography.

[8]  Microscale vapour diffusion for protein crystallization. , 2007, Acta crystallographica. Section D, Biological crystallography.

[9]  Janet Newman,et al.  Initial evaluations of the reproducibility of vapor-diffusion crystallization. , 2007, Acta crystallographica. Section D, Biological crystallography.

[10]  G. Montelione,et al.  Contributions to the NIH-NIGMS Protein Structure Initiative from the PSI Production Centers. , 2008, Structure.

[11]  Samarasena Buchala,et al.  Improved classification of crystallization images using data fusion and multiple classifiers. , 2008, Acta crystallographica. Section D, Biological crystallography.

[12]  Naomi E Chayen,et al.  Protein crystallization: from purified protein to diffraction-quality crystal , 2008, Nature Methods.

[13]  Kurt Wüthrich,et al.  Structural Biology and Crystallization Communications the Jcsg High-throughput Structural Biology Pipeline , 2022 .

[14]  Brian D. Marsden,et al.  High-throughput production of human proteins for crystallization: The SGC experience , 2010, Journal of structural biology.

[15]  Frank von Delft,et al.  Squeezing the most from every crystal: the fine details of data collection , 2013, Acta crystallographica. Section D, Biological crystallography.

[16]  T. Ishikawa,et al.  Integrated database of information from structural genomics experiments. , 2013, Acta crystallographica. Section D, Biological crystallography.

[17]  Patrick Shaw Stewart,et al.  Automation in biological crystallization. , 2014, Acta crystallographica. Section F, Structural biology communications.

[18]  Gaetano T. Montelione,et al.  Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography , 2014, PloS one.

[19]  Lawrence J. DeLucas,et al.  Applications of the second virial coefficient: protein crystallization and solubility , 2014, Acta crystallographica. Section F, Structural biology communications.

[21]  Alexander McPherson,et al.  Introduction to protein crystallization. , 2014, Acta crystallographica. Section F, Structural biology communications.

[22]  Frank von Delft,et al.  Using textons to rank crystallization droplets by the likely presence of crystals , 2014, Acta crystallographica. Section D, Biological crystallography.

[23]  Stefan Knapp,et al.  Defined PEG smears as an alternative approach to enhance the search for crystallization conditions and crystal-quality improvement in reduced screens , 2015, Acta crystallographica. Section D, Biological crystallography.