Linear Regularity and Linear Convergence of Projection-Based Methods for Solving Convex Feasibility Problems

[1]  Chong Li,et al.  Linear convergence of CQ algorithms and applications in gene regulatory network inference , 2017 .

[2]  Chong Li,et al.  On Convergence Rates of Linearized Proximal Algorithms for Convex Composite Optimization with Applications , 2016, SIAM J. Optim..

[3]  Chong Li,et al.  The Dual Normal CHIP and Linear Regularity for Infinite Systems of Convex Sets in Banach Spaces , 2014, SIAM J. Optim..

[4]  Jonathan M. Borwein,et al.  Analysis of the Convergence Rate for the Cyclic Projection Algorithm Applied to Basic Semialgebraic Convex Sets , 2013, SIAM J. Optim..

[5]  Chong Li,et al.  The SECQ, Linear Regularity, and the Strong CHIP for an Infinite System of Closed Convex Sets in Normed Linear Spaces , 2007, SIAM J. Optim..

[6]  Heinz H. Bauschke,et al.  Extrapolation algorithm for affine-convex feasibility problems , 2006, Numerical Algorithms.

[7]  Chong Li,et al.  Strong CHIP for Infinite System of Closed Convex Sets in Normed Linear Spaces , 2005, SIAM J. Optim..

[8]  Wu Li,et al.  Strong CHIP, normality, and linear regularity of convex sets , 2005 .

[9]  Wei Hong Yang,et al.  Regularities and their relations to error bounds , 2004, Math. Program..

[10]  Heinz H. Bauschke,et al.  Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization , 1999, Math. Program..

[11]  Frank Deutsch,et al.  A Dual Approach to Constrained Interpolationfrom a Convex Subset of Hilbert Space , 1997 .

[12]  P. L. Combettes,et al.  Hilbertian convex feasibility problem: Convergence of projection methods , 1997 .

[13]  Krzysztof C. Kiwiel,et al.  Surrogate Projection Methods for Finding Fixed Points of Firmly Nonexpansive Mappings , 1997, SIAM J. Optim..

[14]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[15]  Heinz H. Bauschke,et al.  A norm convergence result on random products of relaxed projections in Hilbert space , 1995 .

[16]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[17]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[18]  Charles K. Chui,et al.  Constrained best approximation in Hilbert space, II , 1992 .

[19]  Patrick L. Combettes,et al.  The foundations of set theoretic estimation , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[20]  Charles K. Chui,et al.  Constrained best approximation in Hilbert space , 1990 .

[21]  N. Ottavy Strong convergence of projection-like methods in Hilbert spaces , 1988 .

[22]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[23]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[24]  Gerald Teschl Functional Analysis , 2023, Texts and Readings in Mathematics.

[25]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[26]  Paul Tseng,et al.  Bounded Linear Regularity, Strong CHIP, and CHIP are Distinct Properties , 2000 .

[27]  Heinz H. Bauschke,et al.  Projection algorithms and monotone operators , 1996 .

[28]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[29]  P. L. Combettes,et al.  Foundation of set theoretic estimation , 1993 .

[30]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[31]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[32]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[33]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[34]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.