Aspects of asymptotic safety for quantum gravity

We study fixed points of quantum gravity with renormalisation group methods, and a procedure to remove certain convergence-limiting poles from the flow. The new setup is tested within the $f(R)$ approximation for gravity by solving exact recursive relations up to order $R^{70}$ in the Ricci scalar, combined with resummations and numerical integration. Results include fixed points, scaling exponents, gap in the eigenvalue spectrum, dimensionality of the UV critical surface, fingerprints for weak coupling, and quantum equations of motion. Our results strengthen the view that "most of quantum gravity" is rather weakly coupled. Another novelty are a pair of de Sitter solutions for quantum cosmology, whose occurrence is traced back to the removal of poles. We also address slight disparities in the literature, and give bounds on number of fundamentally free parameters of quantum gravity.

[1]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[2]  A. Bonanno,et al.  Inflationary solutions in asymptotically safe f(R) theories , 2010, 1006.0192.

[3]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[4]  Scheme independence at first order phase transitions and the renormalisation group , 1996, hep-th/9609040.

[5]  K. Falls Asymptotic Safety and Black Holes , 2013 .

[6]  Francesco Caravelli,et al.  The local potential approximation in quantum gravity , 2012, 1204.3541.

[7]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[8]  Kamila Kowalska,et al.  Directions for model building from asymptotic safety , 2017, 1702.01727.

[9]  Christoph Rahmede,et al.  Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.

[10]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  I. D. Saltas,et al.  UV structure of quantum unimodular gravity , 2014, 1410.6163.

[12]  Sergio Gonzalez-Martin,et al.  Asymptotic Solutions in Asymptotic Safety , 2017, Springer Theses.

[13]  Astrid Eichhorn,et al.  Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario , 2012, 1204.0965.

[14]  Daniel F. Litim,et al.  More asymptotic safety guaranteed , 2017, 1707.04217.

[15]  Universality and the renormalisation group , 2005, hep-th/0503096.

[16]  Benjamin Knorr,et al.  Correlation functions on a curved background , 2017, 1707.01397.

[17]  Jan M. Pawlowski,et al.  Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.

[18]  D. Litim,et al.  Ising exponents from the functional renormalisation group , 2010, 1009.1948.

[19]  N. Christiansen Four-Derivative Quantum Gravity Beyond Perturbation Theory , 2016, 1612.06223.

[20]  M. Niedermaier Can a nontrivial gravitational fixed point be identified in perturbation theory , 2011 .

[21]  R. Percacci,et al.  Erratum: Asymptotic safety in an interacting system of gravity and scalar matter [Phys. Rev. D 93, 044049 (2016)] , 2016 .

[22]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[23]  Daniel F. Litim Derivative expansion and renormalisation group flows , 2001 .

[24]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[25]  Astrid Eichhorn,et al.  Viability of quantum-gravity induced ultraviolet completions for matter , 2017, 1705.02342.

[26]  Holger Gies,et al.  Generalized parametrization dependence in quantum gravity , 2015, 1507.08859.

[27]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[28]  Astrid Eichhorn,et al.  The Renormalization Group flow of unimodular f(R) gravity , 2015, 1501.05848.

[29]  Frank Saueressig,et al.  Renormalization group fixed points of foliated gravity-matter systems , 2017, 1702.06539.

[30]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity-matter systems , 2015, 1510.07018.

[31]  J. Pawlowski,et al.  Chiral fermions in asymptotically safe quantum gravity , 2016, The European Physical Journal C.

[32]  Jan M. Pawlowski,et al.  Quantum-gravity effects on a Higgs-Yukawa model , 2016, 1604.02041.

[33]  D. Litim,et al.  Asymptotic safety of gauge theories beyond marginal interactions , 2017 .

[34]  Jan Martin Pawlowski,et al.  Scaling solutions for dilaton quantum gravity , 2016, 1605.01858.

[35]  A. Kurov,et al.  Impact of topology in foliated quantum Einstein gravity , 2017, The European Physical Journal C.

[36]  Astrid Eichhorn,et al.  Top mass from asymptotic safety , 2017, 1707.01107.

[37]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[38]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[39]  Daniel Becker,et al.  En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions , 2014, 1404.4537.

[40]  M. Reuter,et al.  Non-perturbative QEG corrections to the Yang–Mills beta function , 2010, 1005.1488.

[41]  A. Eichhorn,et al.  Is scale-invariance in gauge-Yukawa systems compatible with the graviton? , 2017, 1705.01858.

[42]  D. Litim,et al.  Asymptotic safety guaranteed , 2014, 1406.2337.

[43]  A. Wipf,et al.  Phases of supersymmetric O(N) theories , 2012, 1208.5389.

[44]  Peter Labus,et al.  Asymptotic safety in an interacting system of gravity and scalar matter , 2015, 1512.01589.

[45]  D. Litim,et al.  Fixed points and the spontaneous breaking of scale invariance , 2017, 1702.05749.

[46]  D. Litim,et al.  Asymptotic Safety Guaranteed in Supersymmetry. , 2017, Physical review letters.

[47]  D. Litim,et al.  On de Sitter solutions in asymptotically safe f(R) theories , 2016, Classical and Quantum Gravity.

[48]  Jan M. Pawlowski,et al.  How perturbative is quantum gravity? , 2018, Physics Letters B.

[49]  A. Bonanno,et al.  Proper time flow equation for gravity , 2005 .

[50]  Daniel F. Litim,et al.  Theorems for asymptotic safety of gauge theories , 2016, 1608.00519.

[51]  M. Hindmarsh,et al.  f(R) Gravity from the renormalisation group , 2012, 1203.3957.

[52]  Roberto Percacci,et al.  Search of scaling solutions in scalar–tensor gravity , 2015, 1501.00888.

[53]  D. Benedetti Essential nature of Newton’s constant in unimodular gravity , 2015, 1511.06560.

[54]  Astrid Eichhorn,et al.  An Asymptotically Safe Guide to Quantum Gravity and Matter , 2018, Front. Astron. Space Sci..

[55]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[56]  J. York Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial‐value problem of general relativity , 1973 .

[57]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[58]  Astrid Eichhorn,et al.  Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.

[59]  Max Niedermaier,et al.  Gravitational fixed points and asymptotic safety from perturbation theory , 2010 .

[60]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[61]  Antonio Padilla,et al.  A note on classical and quantum unimodular gravity , 2014, 1409.3573.

[62]  Charge crossover at the U(1) Higgs phase transition , 2000, hep-ph/0002153.

[63]  D. Litim,et al.  Critical $O(N)$ models in the complex field plane , 2016, 1607.02030.

[64]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[65]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[66]  D. Litim,et al.  Perturbation theory and renormalization group equations , 2001, hep-th/0111191.

[67]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[68]  Peter Labus,et al.  Asymptotic safety in $O(N)$ scalar models coupled to gravity , 2015, 1505.05393.

[69]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[70]  Jens Braun,et al.  Asymptotic safety: a simple example , 2010, 1011.1456.

[71]  Jan M. Pawlowski,et al.  The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows , 2012, 1203.4207.

[72]  Frank Saueressig,et al.  Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.

[73]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[74]  D. Benedetti On the number of relevant operators in asymptotically safe gravity , 2013, 1301.4422.

[75]  Daniel F Litim Fixed points of quantum gravity. , 2004, Physical review letters.

[76]  Frank Saueressig,et al.  A proper fixed functional for four-dimensional Quantum Einstein Gravity , 2015, 1504.07656.

[77]  Donoghue,et al.  Leading quantum correction to the Newtonian potential. , 1993, Physical review letters.

[78]  Jan Martin Pawlowski,et al.  Dilaton quantum gravity , 2013, 1304.7743.

[79]  Nobuyoshi Ohta,et al.  Higher derivative gravity and asymptotic safety in diverse dimensions , 2013, 1308.3398.

[80]  Jan M. Pawlowski,et al.  Local Quantum Gravity , 2015, 1506.07016.

[81]  Carlo Pagani,et al.  Composite operators in asymptotic safety , 2016, 1611.06522.

[82]  D. Litim,et al.  UV conformal window for asymptotic safety , 2017, 1710.07615.

[83]  Jan M. Pawlowski,et al.  Curvature dependence of quantum gravity , 2017, 1711.09259.

[84]  Christoph Rahmede,et al.  Asymptotically safe cosmology , 2011, 1101.5401.

[85]  Jan M. Pawlowski,et al.  Global Flows in Quantum Gravity , 2014, 1403.1232.

[86]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[87]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.

[88]  Astrid Eichhorn,et al.  Upper bound on the Abelian gauge coupling from asymptotic safety , 2017, 1709.07252.

[89]  Nobuyoshi Ohta,et al.  Flow equation for $f(R)$ gravity and some of its exact solutions , 2015, 1507.00968.

[90]  A. Patkós,et al.  Non-Gaussian fixed points in fermionic field theories without auxiliary Bose fields , 2014, 1406.3195.

[91]  Christoph Rahmede,et al.  Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.

[92]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[93]  Nobuyoshi Ohta,et al.  Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization , 2015, 1511.09393.

[94]  Juergen A. Dietz,et al.  Redundant operators in the exact renormalisation group and in the f (R) approximation to asymptotic safety , 2013, Journal of High Energy Physics.

[95]  M. Yamada,et al.  Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity , 2015, 1510.03734.

[96]  Francesco Caravelli,et al.  Erratum: the local potential approximation in quantum gravity , 2012 .

[97]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[98]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[99]  Holger Gies,et al.  Gravitational Two-Loop Counterterm Is Asymptotically Safe. , 2016, Physical review letters.

[100]  D. Litim Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.

[101]  Nobuyoshi Ohta,et al.  Asymptotic safety and field parametrization dependence in the f(R) truncation , 2018, Physical Review D.

[102]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[103]  Astrid Eichhorn,et al.  An asymptotically safe solution to the U(1) triviality problem , 2017, 1702.07724.

[104]  K. Nikolakopoulos Quantum gravity and the renormalisation group: theoretical advances and applications , 2013 .

[105]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[106]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[107]  D. Litim,et al.  Asymptotic safety of scalar field theories , 2018, Physical Review D.

[108]  A. Wipf,et al.  Critical behavior of supersymmetric O(N) models in the large-N limit , 2011, 1107.3011.

[109]  J. M. Pawlowski,et al.  Towards apparent convergence in asymptotically safe quantum gravity , 2016, The European Physical Journal C.

[110]  D. Litim,et al.  Completeness and consistency of renormalisation group flows , 2002, hep-th/0202188.

[111]  Astrid Eichhorn,et al.  Light fermions in quantum gravity , 2011, 1104.5366.

[112]  Martin Reuter,et al.  QED coupled to QEG , 2011, 1101.6007.

[113]  Daniel Becker,et al.  On avoiding Ostrogradski instabilities within Asymptotic Safety , 2017, Journal of High Energy Physics.

[114]  Kevin Falls,et al.  Renormalization of Newton's constant , 2015, 1501.05331.

[115]  Kevin Falls,et al.  Asymptotic safety and the cosmological constant , 2014, 1408.0276.

[116]  Roberto Percacci,et al.  Functional renormalization with fermions and tetrads , 2012, 1209.3649.

[117]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[118]  H. Gies,et al.  Asymptotic safety of simple Yukawa systems , 2009, 0901.2459.

[119]  A. Eichhorn,et al.  Quantum gravity and Standard-Model-like fermions , 2016, 1611.05878.

[120]  Christoph Rahmede,et al.  Asymptotic safety of quantum gravity beyond Ricci scalars , 2017, 1801.00162.

[121]  Nobuyoshi Ohta,et al.  Renormalization group equation for f(R) gravity on hyperbolic spaces , 2016, 1607.08460.

[122]  Frank Saueressig,et al.  Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.

[123]  Jan M. Pawlowski,et al.  Asymptotic freedom of Yang–Mills theory with gravity , 2011, 1101.5552.

[124]  Roberto Percacci,et al.  Renormalization group flow in scalar-tensor theories: I , 2009, 0911.0386.

[125]  H. Gies,et al.  Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.

[126]  Kevin Falls Critical scaling in quantum gravity from the renormalisation group , 2015 .

[127]  Seth Pettie,et al.  Mind the gap , 2006, Nature Reviews Drug Discovery.

[128]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity with matter , 2017, 1710.04669.

[129]  Juergen A. Dietz,et al.  Asymptotic safety in the f(R) approximation , 2012, 1211.0955.

[130]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[131]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[132]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[133]  M. Niedermaier,et al.  Gravitational fixed points from perturbation theory. , 2009, Physical review letters.

[134]  Kevin Falls,et al.  Physical renormalization schemes and asymptotic safety in quantum gravity , 2017, 1702.03577.

[135]  Carlo Pagani,et al.  Consistent closure of renormalization group flow equations in quantum gravity , 2013, 1304.4777.