The physics of superconducting microwave resonators

Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID)is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise mechanism, however, is still not clear. With the theoretical results of the responsivity and the semi-empirical noise model established in this thesis, a prediction of the detector sensitivity (noise equivalent power) and an optimization of the detector design are now possible.

[1]  C. Wen Coplanar Waveguide, a Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications , 1969 .

[2]  J. Zmuidzinas,et al.  Equivalence of the Effects on the Complex Conductivity of Superconductor due to Temperature Change and External Pair Breaking , 2008 .

[3]  R. Chambers The anomalous skin effect , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[5]  Jonas Zmuidzinas,et al.  Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.

[6]  Adrian T. Lee,et al.  Voltage-Biased Superconducting Transition-Edge Bolometer with Strong Electrothermal Feedback Operated at 370 mK. , 1998, Applied optics.

[7]  Nikolai I. Chernov,et al.  Least Squares Fitting of Circles , 2005, Journal of Mathematical Imaging and Vision.

[8]  P. K. Daya,et al.  Antenna-coupled microwave kinetic inductance detectors , 2006 .

[9]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[10]  B. Bumble,et al.  An X‐band SQUID Multiplexer , 2006 .

[11]  Jonas Zmuidzinas,et al.  Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.

[12]  Kent D. Irwin,et al.  Digital readouts for large microwave low-temperature detector arrays , 2006 .

[13]  S. Ishida,et al.  Superconductivity in PtSi ultrathin films , 1994 .

[14]  John M. Martinis,et al.  A semiempirical model for two-level system noise in superconducting microresonators , 2008 .

[15]  L. Kadanoff,et al.  Electromagnetic properties of superconductors , 1961 .

[16]  R. Poepel Electromagnetic Properties of Superconductors , 1989 .

[17]  Benjamin A. Mazin,et al.  Microwave Kinetic Inductance Detectors , 2005, The WSPC Handbook of Astronomical Instrumentation.

[18]  R. Simons Coplanar waveguide circuits, components, and systems , 2001 .

[19]  J. Gao,et al.  Kinetic Inductance Phonon Sensors for the Cryogenic Dark Matter Search Experiment , 2008 .

[20]  White,et al.  Quantum transport of buried single-crystalline CoSi2 layers in (111)Si and (100)Si substrates. , 1993, Physical Review B (Condensed Matter).

[21]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[22]  Helmut Eschrig,et al.  Microscopic theory of superconductivity , 1969 .

[23]  Alfred Brian Pippard,et al.  An experimental and theoretical study of the relation between magnetic field and current in a superconductor , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  I. Rubin,et al.  Random point processes , 1977, Proceedings of the IEEE.

[25]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[26]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[27]  D. J. Goldie,et al.  Single optical photon detection with a superconducting tunnel junction , 1996, Nature.

[28]  R. Collin Foundations for microwave engineering , 1966 .

[29]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[30]  R. E. Glover,et al.  Conductivity of superconducting films for photon energies between 0. 3 and 40 kT/sub c/ , 1957 .

[31]  G. Hilton,et al.  A Mo–Cu superconducting transition-edge microcalorimeter with 4.5 eV energy resolution at 6 keV ☆ , 2000 .

[32]  A. C. Anderson,et al.  Amorphous Solids: Low-Temperature Properties , 1981 .

[33]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[34]  S. Sridhar,et al.  Microwave response of thin‐film superconductors , 1988 .

[35]  F. London Electrodynamics of Macroscopic Fields in Supraconductors , 1936, Nature.

[36]  Sae Woo Nam,et al.  Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .

[37]  V. V. Hristov,et al.  Cosmological parameters from the first results of Boomerang , 2001 .

[38]  D. Twerenbold,et al.  Giaever-type superconducting tunnelling junctions as high-resolution X-ray detectors , 1986 .

[39]  John Ward,et al.  SuperMix: A Flexible Software Library for High-Frequency Circuit Simulation, Including SIS Mixers and Superconducting Elements , 1999 .

[40]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[41]  Jonas Zmuidzinas,et al.  Power dependence of phase noise in microwave kinetic inductance detectors , 2006, SPIE Astronomical Telescopes + Instrumentation.

[42]  D. Scalapino,et al.  SUPERCONDUCTING STATE UNDER THE INFLUENCE OF EXTERNAL DYNAMIC PAIR BREAKING. , 1972 .

[43]  S. Golwala,et al.  A Millimeter and Submillimeter Kinetic Inductance Detector Camera , 2008 .

[44]  W. Chang,et al.  The inductance of a superconducting strip transmission line , 1979 .

[45]  Stafford Withington,et al.  Superconducting kinetic inductance detectors for astrophysics , 2007 .

[46]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[47]  W A Phillips Two-level states in glasses , 1987 .

[48]  B. Mühlschlegel Die thermodynamischen Funktionen des Supraleiters , 1959 .

[49]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[50]  G. Hilton,et al.  X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback , 1996 .

[51]  James J. Bock,et al.  Bolocam: a millimeter-wave bolometric camera , 1998, Astronomical Telescopes and Instrumentation.

[52]  Reynaud,et al.  Linear input-output method for quantum fluctuations in optical bistability with two-level atoms. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[53]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[54]  Jonas Zmuidzinas,et al.  Multiplexable Kinetic Inductance Detectors , 2002 .

[55]  Wolf,et al.  Background charge noise in metallic single-electron tunneling devices. , 1996, Physical review. B, Condensed matter.

[56]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[57]  G. Reuter,et al.  Theory of the Anomalous Skin Effect in Metals , 1948, Nature.

[58]  K. Irwin,et al.  Evaluation of a Microwave SQUID Multiplexer Prototype , 2007, IEEE Transactions on Applied Superconductivity.

[59]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[60]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[61]  J. Zmuidzinas,et al.  A WIMP Dark Matter Detector Using MKIDs , 2008 .

[62]  D. Mattis,et al.  Theory of the anomalous skin effect in normal and superconducting metals , 1958 .

[63]  F. Simon Application of Low Temperature Calorimetry to Radioactive Measurements , 1935, Nature.

[64]  Jonas Zmuidzinas,et al.  Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators , 2008 .

[65]  Fiona A. Harrison,et al.  Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors , 2006 .

[66]  S. Golwala,et al.  Optical/UV and X-Ray Microwave Kinetic Inductance Strip Detectors , 2008 .

[67]  T. M. Klapwijk,et al.  Noise and Sensitivity of Aluminum Kinetic Inductance Detectors for Sub-mm Astronomy , 2008 .

[68]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .