The physics of superconducting microwave resonators
暂无分享,去创建一个
[1] C. Wen. Coplanar Waveguide, a Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications , 1969 .
[2] J. Zmuidzinas,et al. Equivalence of the Effects on the Complex Conductivity of Superconductor due to Temperature Change and External Pair Breaking , 2008 .
[3] R. Chambers. The anomalous skin effect , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[4] H. Leduc,et al. A broadband superconducting detector suitable for use in large arrays , 2003, Nature.
[5] Jonas Zmuidzinas,et al. Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.
[6] Adrian T. Lee,et al. Voltage-Biased Superconducting Transition-Edge Bolometer with Strong Electrothermal Feedback Operated at 370 mK. , 1998, Applied optics.
[7] Nikolai I. Chernov,et al. Least Squares Fitting of Circles , 2005, Journal of Mathematical Imaging and Vision.
[8] P. K. Daya,et al. Antenna-coupled microwave kinetic inductance detectors , 2006 .
[9] L Frunzio,et al. Generating single microwave photons in a circuit. , 2007, Nature.
[10] B. Bumble,et al. An X‐band SQUID Multiplexer , 2006 .
[11] Jonas Zmuidzinas,et al. Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.
[12] Kent D. Irwin,et al. Digital readouts for large microwave low-temperature detector arrays , 2006 .
[13] S. Ishida,et al. Superconductivity in PtSi ultrathin films , 1994 .
[14] John M. Martinis,et al. A semiempirical model for two-level system noise in superconducting microresonators , 2008 .
[15] L. Kadanoff,et al. Electromagnetic properties of superconductors , 1961 .
[16] R. Poepel. Electromagnetic Properties of Superconductors , 1989 .
[17] Benjamin A. Mazin,et al. Microwave Kinetic Inductance Detectors , 2005, The WSPC Handbook of Astronomical Instrumentation.
[18] R. Simons. Coplanar waveguide circuits, components, and systems , 2001 .
[19] J. Gao,et al. Kinetic Inductance Phonon Sensors for the Cryogenic Dark Matter Search Experiment , 2008 .
[20] White,et al. Quantum transport of buried single-crystalline CoSi2 layers in (111)Si and (100)Si substrates. , 1993, Physical Review B (Condensed Matter).
[21] J. Teufel,et al. Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.
[22] Helmut Eschrig,et al. Microscopic theory of superconductivity , 1969 .
[23] Alfred Brian Pippard,et al. An experimental and theoretical study of the relation between magnetic field and current in a superconductor , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[24] I. Rubin,et al. Random point processes , 1977, Proceedings of the IEEE.
[25] E. Jaynes,et al. Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .
[26] A. Melchiorri,et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.
[27] D. J. Goldie,et al. Single optical photon detection with a superconducting tunnel junction , 1996, Nature.
[28] R. Collin. Foundations for microwave engineering , 1966 .
[29] S. Girvin,et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.
[30] R. E. Glover,et al. Conductivity of superconducting films for photon energies between 0. 3 and 40 kT/sub c/ , 1957 .
[31] G. Hilton,et al. A Mo–Cu superconducting transition-edge microcalorimeter with 4.5 eV energy resolution at 6 keV ☆ , 2000 .
[32] A. C. Anderson,et al. Amorphous Solids: Low-Temperature Properties , 1981 .
[33] P. Anderson,et al. Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .
[34] S. Sridhar,et al. Microwave response of thin‐film superconductors , 1988 .
[35] F. London. Electrodynamics of Macroscopic Fields in Supraconductors , 1936, Nature.
[36] Sae Woo Nam,et al. Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .
[37] V. V. Hristov,et al. Cosmological parameters from the first results of Boomerang , 2001 .
[38] D. Twerenbold,et al. Giaever-type superconducting tunnelling junctions as high-resolution X-ray detectors , 1986 .
[39] John Ward,et al. SuperMix: A Flexible Software Library for High-Frequency Circuit Simulation, Including SIS Mixers and Superconducting Elements , 1999 .
[40] Christian Enss,et al. Cryogenic particle detection , 2005 .
[41] Jonas Zmuidzinas,et al. Power dependence of phase noise in microwave kinetic inductance detectors , 2006, SPIE Astronomical Telescopes + Instrumentation.
[42] D. Scalapino,et al. SUPERCONDUCTING STATE UNDER THE INFLUENCE OF EXTERNAL DYNAMIC PAIR BREAKING. , 1972 .
[43] S. Golwala,et al. A Millimeter and Submillimeter Kinetic Inductance Detector Camera , 2008 .
[44] W. Chang,et al. The inductance of a superconducting strip transmission line , 1979 .
[45] Stafford Withington,et al. Superconducting kinetic inductance detectors for astrophysics , 2007 .
[46] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[47] W A Phillips. Two-level states in glasses , 1987 .
[48] B. Mühlschlegel. Die thermodynamischen Funktionen des Supraleiters , 1959 .
[49] Kent D. Irwin,et al. Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .
[50] G. Hilton,et al. X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback , 1996 .
[51] James J. Bock,et al. Bolocam: a millimeter-wave bolometric camera , 1998, Astronomical Telescopes and Instrumentation.
[52] Reynaud,et al. Linear input-output method for quantum fluctuations in optical bistability with two-level atoms. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[53] Jens Koch,et al. Coupling superconducting qubits via a cavity bus , 2007, Nature.
[54] Jonas Zmuidzinas,et al. Multiplexable Kinetic Inductance Detectors , 2002 .
[55] Wolf,et al. Background charge noise in metallic single-electron tunneling devices. , 1996, Physical review. B, Condensed matter.
[56] Clare C. Yu,et al. Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.
[57] G. Reuter,et al. Theory of the Anomalous Skin Effect in Metals , 1948, Nature.
[58] K. Irwin,et al. Evaluation of a Microwave SQUID Multiplexer Prototype , 2007, IEEE Transactions on Applied Superconductivity.
[59] R. J. Schoelkopf,et al. Resolving photon number states in a superconducting circuit , 2007, Nature.
[60] Michael Tinkham,et al. Introduction to Superconductivity , 1975 .
[61] J. Zmuidzinas,et al. A WIMP Dark Matter Detector Using MKIDs , 2008 .
[62] D. Mattis,et al. Theory of the anomalous skin effect in normal and superconducting metals , 1958 .
[63] F. Simon. Application of Low Temperature Calorimetry to Radioactive Measurements , 1935, Nature.
[64] Jonas Zmuidzinas,et al. Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators , 2008 .
[65] Fiona A. Harrison,et al. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors , 2006 .
[66] S. Golwala,et al. Optical/UV and X-Ray Microwave Kinetic Inductance Strip Detectors , 2008 .
[67] T. M. Klapwijk,et al. Noise and Sensitivity of Aluminum Kinetic Inductance Detectors for Sub-mm Astronomy , 2008 .
[68] W. A. Phillips,et al. Tunneling states in amorphous solids , 1972 .