Circular Economy - A challenge and an opportunity for Process Systems Engineering

Abstract Rising populations put huge stresses on natural resources. Extraction and depletion of raw materials and waste created throughout the supply chain of products have enormous environmental and socioeconomic impacts. One way to reduce these impacts is through the move towards the circular economy (CE). CE aims to solve resource, waste, and emission challenges confronting society by creating a production-to-consumption total supply chain that is restorative, regenerative, and environmentally benign. This article highlights research challenges and identifies process systems engineering (PSE) research opportunities to assist in the understanding, analysis and optimization of CE supply chains. A motivating example on the supply chain of coffee is introduced to illustrate the challenges of the transition towards a CE and to propose PSE research opportunities.

[1]  Jay F. Martin,et al.  Life cycle and emergy based design of energy systems in developing countries: Centralized and localized options , 2015 .

[2]  M. Realff,et al.  Carpet Recycling: Determining the Reverse Production System Design , 1999 .

[3]  D. Nagesh Kumar,et al.  Optimal Irrigation Allocation: A Multilevel Approach , 2000 .

[4]  Marc Goetschalckx,et al.  A stochastic programming approach for supply chain network design under uncertainty , 2004, Eur. J. Oper. Res..

[5]  Fengqi You,et al.  Systems engineering opportunities for agricultural and organic waste management in the food–water–energy nexus , 2017 .

[6]  C. Floudas,et al.  A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization. , 2011, Industrial & engineering chemistry research.

[7]  Stephen E. Zitney,et al.  A Superstructure-Based Optimal Synthesis of PSA Cycles for Post-Combustion CO2 Capture , 2009 .

[8]  I. Grossmann,et al.  Optimization of Energy and Water Consumption in Corn-Based Ethanol Plants , 2010 .

[9]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[10]  Efstratios N. Pistikopoulos,et al.  Multi-parametric global optimization approach for tri-level mixed-integer linear optimization problems , 2019, J. Glob. Optim..

[11]  Costas A. Velis,et al.  Metrics for optimising the multi-dimensional value of resources recovered from waste in a circular economy: A critical review , 2017 .

[12]  Marten E. Toxopeus,et al.  Cradle to Cradle: Effective Vision vs. Efficient Practice?☆ , 2015 .

[13]  Johan Grievink,et al.  Process intensification and process systems engineering: A friendly symbiosis , 2008, Comput. Chem. Eng..

[14]  Lidija Čuček,et al.  Multi-objective optimisation for generating sustainable solutions considering total effects on the environment , 2013 .

[15]  Efstratios N. Pistikopoulos,et al.  Environmentally conscious long-range planning and design of supply chain networks , 2005 .

[16]  Fengqi You,et al.  Optimal design and operations of supply chain networks for water management in shale gas production: MILFP model and algorithms for the water‐energy nexus , 2015 .

[17]  Rudy R. Negenborn,et al.  Dynamic optimization of ship energy efficiency considering time-varying environmental factors , 2018, Transportation Research Part D: Transport and Environment.

[18]  Jiří Jaromír Klemeš,et al.  Recent advances in green energy and product productions, environmentally friendly, healthier and safer technologies and processes, CO2 capturing, storage and recycling, and sustainability assessment in decision-making , 2015, Clean Technologies and Environmental Policy.

[19]  Jiří Jaromír Klemeš,et al.  Software tools overview: Process integration, modelling and optimisation for energy saving and pollution reduction , 2010 .

[20]  A. I. Stankiewicz,et al.  Process Intensification: Transforming Chemical Engineering , 2000 .

[21]  Rafiqul Gani,et al.  SustainPro - A tool for systematic process analysis, generation and evaluation of sustainable design alternatives , 2013, Comput. Chem. Eng..

[22]  S. Sauvé,et al.  Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research , 2016 .

[23]  S. Hellweg,et al.  Do We Have the Right Performance Indicators for the Circular Economy?: Insight into the Swiss Waste Management System , 2017 .

[24]  Pierluigi Mancarella,et al.  Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies , 2015 .

[25]  Mahmoud M. El-Halwagi,et al.  Global optimization for the synthesis of property-based recycle and reuse networks including environmental constraints , 2010, Comput. Chem. Eng..

[26]  Maria Grazia Gnoni,et al.  Measuring circular economy strategies through index methods: A critical analysis , 2017 .

[27]  Wen-Tien Tsai,et al.  Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue , 2012 .

[28]  M. M. Naidu,et al.  Sustainable management of coffee industry by-products and value addition—A review , 2012 .

[29]  Mahmoud M. El-Halwagi,et al.  Process intensification: New understanding and systematic approach , 2012 .

[30]  Efstratios N. Pistikopoulos,et al.  Municipal solid waste to liquid transportation fuels - Part III: An optimization-based nationwide supply chain management framework , 2017, Comput. Chem. Eng..

[31]  Tom Van Gerven,et al.  Structure, energy, synergy, time - the fundamentals of Process Intensification , 2009 .

[32]  Mahmoud M. El-Halwagi,et al.  Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. , 2014 .

[33]  Rafiqul Gani,et al.  Process intensification: A perspective on process synthesis , 2010 .

[34]  Efstratios N. Pistikopoulos,et al.  A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems , 2019, Comput. Chem. Eng..

[35]  M. M. Faruque Hasan,et al.  Systematic process intensification , 2019, Current Opinion in Chemical Engineering.

[36]  Marly Monteiro de Carvalho,et al.  The circular economy umbrella: Trends and gaps on integrating pathways , 2018 .

[37]  Onur Onel,et al.  Multi‐scale systems engineering for energy and the environment: Challenges and opportunities , 2016 .

[38]  Rebecca Frauzem,et al.  A generic methodology for processing route synthesis and design based on superstructure optimization , 2017, Comput. Chem. Eng..

[39]  Costas D. Maranas,et al.  Managing demand uncertainty in supply chain planning , 2003, Comput. Chem. Eng..

[40]  Steve Cayzer,et al.  Design of indicators for measuring product performance in the circular economy , 2016 .

[41]  Lazaros G. Papageorgiou,et al.  Supply chain optimisation for the process industries: Advances and opportunities , 2009, Comput. Chem. Eng..

[42]  K. P. Papalexandri,et al.  Mass exchange networks for waste minimization : a simultaneous approach : Process design , 1994 .

[43]  Jiří Jaromír Klemeš,et al.  Total footprints-based multi-criteria optimisation of regional biomass energy supply chains , 2012 .

[44]  Efstratios N. Pistikopoulos,et al.  Infrastructure Planning and Operational Scheduling for Power Generating Systems: An Energy-Water Nexus Approach , 2019 .

[45]  Colin Ramshaw,et al.  Process intensification: laminar flow heat transfer , 1986 .

[46]  Min Zhu,et al.  A Food-Energy-Water Nexus approach for land use optimization. , 2019, The Science of the total environment.

[47]  Yong Geng,et al.  Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of s , 2011 .

[48]  Quan He,et al.  Spent coffee grounds: A review on current utilization , 2019, Journal of Industrial and Engineering Chemistry.

[49]  Michael Baldea,et al.  Dynamic Process Intensification of Binary Distillation via Periodic Operation , 2018, Industrial & Engineering Chemistry Research.

[50]  J. M. Ponce-Ortega,et al.  Optimal Water Management under Uncertainty for Shale Gas Production , 2016 .

[51]  Gonzalo Guillén-Gosálbez,et al.  Technology Updating Decisions for Improving the Environmental Performance of an Operating Supply Chain: A Multiobjective Optimization Model for the Cement Industry , 2016 .

[52]  Alexander Mitsos,et al.  Structural optimization of seawater desalination: I. A flexible superstructure and novel MED–MSF configurations , 2014 .

[53]  Helmut Rechberger,et al.  Measuring the circular economy - A Multiple Correspondence Analysis of 63 metrics , 2019, Journal of Cleaner Production.

[54]  Efstratios N. Pistikopoulos,et al.  Generalized modular framework for the representation and synthesis of complex distillation column sequences , 2005 .

[55]  Bernard Yannou,et al.  A taxonomy of circular economy indicators , 2018, Journal of Cleaner Production.

[56]  Jiří Jaromír Klemeš,et al.  Circular Integration of processes, industries, and economies , 2019, Renewable and Sustainable Energy Reviews.

[57]  V. Vassiliadis,et al.  Dynamic Optimization of Single- and Multi-Stage Systems Using a Hybrid Stochastic-Deterministic Method , 2005 .

[58]  Bernard Yannou,et al.  How to Assess Product Performance in the Circular Economy? Proposed Requirements for the Design of a Circularity Measurement Framework , 2017 .

[59]  Mo Li,et al.  A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties , 2014 .

[60]  Chrysanthos E. Gounaris,et al.  Multi‐stage adjustable robust optimization for process scheduling under uncertainty , 2016 .

[61]  Efstratios N. Pistikopoulos,et al.  Synthesis of Operable Process Intensification Systems—Steady-State Design with Safety and Operability Considerations , 2019, Industrial & Engineering Chemistry Research.

[62]  Ferenc Friedler,et al.  Synthesis of sustainable energy supply chain by the P-graph framework , 2012 .

[63]  Marcus Linder,et al.  A Metric for Quantifying Product‐Level Circularity , 2017 .

[64]  L. Puigjaner,et al.  Multiobjective supply chain design under uncertainty , 2005 .

[65]  Gonzalo Guillén-Gosálbez,et al.  Methodology for combined use of data envelopment analysis and life cycle assessment applied to food waste management , 2016 .

[66]  Antonella Samoggia,et al.  Coffee consumption and purchasing behavior review: Insights for further research , 2018, Appetite.

[67]  Matthias Finkbeiner,et al.  Enhancing the practical implementation of life cycle sustainability assessment – proposal of a Tiered approach , 2015 .

[68]  Dimitris Bertsimas,et al.  Binary decision rules for multistage adaptive mixed-integer optimization , 2018, Math. Program..

[69]  R. Merli,et al.  How do scholars approach the circular economy? A systematic literature review , 2017 .

[70]  Jianping Li,et al.  Systematic process intensification using building blocks , 2017, Comput. Chem. Eng..

[71]  M. Hekkert,et al.  Conceptualizing the Circular Economy: An Analysis of 114 Definitions , 2017 .

[72]  Lothar Reh,et al.  Process engineering in circular economy , 2013 .

[73]  Iqbal M. Mujtaba,et al.  A simple model for complex waste recycling scenarios in developing economies , 2000 .

[74]  Marianthi G. Ierapetritou,et al.  Optimal design of sustainable chemical processes and supply chains: A review , 2012, Comput. Chem. Eng..

[75]  Not Indicated,et al.  International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance , 2010 .

[76]  S. Evans,et al.  Business Models and Supply Chains for the Circular Economy , 2018, Journal of Cleaner Production.

[77]  Ignacio E. Grossmann,et al.  An overview of process intensification methods , 2019, Current Opinion in Chemical Engineering.

[78]  J. B. Cruz,et al.  Fuzzy input–output model for optimizing eco-industrial supply chains under water footprint constraints , 2011 .

[79]  Efstratios N. Pistikopoulos,et al.  An overview of process systems engineering approaches for process intensification: State of the art , 2018, Chemical Engineering and Processing - Process Intensification.

[80]  Ignasi Palou-Rivera,et al.  The RAPID Manufacturing Institute – Reenergizing US efforts in process intensification and modular chemical processing , 2019, Chemical Engineering and Processing - Process Intensification.

[81]  Styliani Avraamidou,et al.  A hierarchical Food-Energy-Water Nexus (FEW-N) decision-making approach for Land Use Optimization. , 2018, International symposium on process systems engineering.

[82]  F. F. Reichheld,et al.  Zero defections: quality comes to services. , 1990, Harvard business review.

[83]  Efstratios N. Pistikopoulos,et al.  A Multiparametric Mixed-integer Bi-level Optimization Strategy for Supply Chain Planning Under Demand Uncertainty , 2017 .

[84]  H. A. Hassard,et al.  Product carbon footprint and energy analysis of alternative coffee products in Japan , 2014 .

[85]  Zdravko Kravanja,et al.  Designing a Total Site for an entire lifetime under fluctuating utility prices , 2015, Comput. Chem. Eng..

[86]  Alexander Mitsos,et al.  Global solution of nonlinear mixed-integer bilevel programs , 2010, J. Glob. Optim..

[87]  Medardo Serna-González,et al.  Optimal planning for the sustainable utilization of municipal solid waste. , 2013, Waste management.

[88]  Nilay Shah,et al.  Sustainable planning of the energy-water-food nexus using decision making tools , 2018 .

[89]  Hsiao-Chien Chang,et al.  Corporate Brand Image and Customer Satisfaction on Loyalty: An Empirical Study of Starbucks Coffee in Taiwan , 2012 .

[90]  Willem K. Brauers,et al.  Optimization Methods for a Stakeholder Society: A Revolution in Economic Thinking by Multi-objective Optimization , 2003 .

[91]  Sandra Rousseau,et al.  Defining and Measuring the Circular Economy: A Mathematical Approach , 2019, Ecological Economics.

[92]  Manuel Taifouris,et al.  Multiscale scheme for the optimal use of residues for the production of biogas across Castile and Leon , 2018, Journal of Cleaner Production.

[93]  Rafiqul Gani,et al.  A computer-aided software-tool for sustainable process synthesis-intensification , 2017, Comput. Chem. Eng..

[94]  Jean-Marc Commenge,et al.  Local and global process intensification , 2014 .

[95]  F. Bezzo,et al.  Optimizing the economics and the carbon and water footprints of bioethanol supply chains , 2012 .

[96]  Sanjib Kumar Karmee,et al.  A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. , 2018, Waste management.

[97]  Jai P. Gupta,et al.  Inherently Safer Design—Present and Future , 2002 .

[98]  Efstratios N. Pistikopoulos,et al.  B-POP: Bi-level parametric optimization toolbox , 2019, Comput. Chem. Eng..

[99]  Gunter A. Pauli,et al.  Blue Economy-10 Years, 100 Innovations, 100 Million Jobs , 2010 .