Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions
暂无分享,去创建一个
[1] A. C. M. van Rooij,et al. Non-Archimedean functional analysis , 1978 .
[2] A. Khrennikov,et al. Mathematical methods of non-Archimedean physics , 1990 .
[3] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[4] G. Kalisch. On p-Adic Hilbert Spaces , 1947 .
[5] Yrjö Ahmavaara,et al. The Structure of Space and the Formalism of Relativistic Quantum Theory. I , 1965 .
[6] Okada,et al. p-adic string N-point function. , 1988, Physical Review Letters.
[7] A. F. Monna,et al. Analyse non-archimédienne , 1970 .
[8] Andrew Khrennikov,et al. p-adic probability interpretation of Bell's inequality , 1995 .
[9] P. Freund,et al. Non-archimedean strings , 1987 .
[10] I. Volovich. Number theory as the ultimate physical theory , 1987 .
[11] N. Cutland. Infinitesimals in Action , 1987 .
[12] Ulrich Güntzer,et al. Non-Archimedean Analysis , 1984 .
[13] R. Cianci,et al. Canp-adic numbers be useful to regularize divergent expectation values of quantum observables? , 1994 .
[14] Andrei Khrennikov,et al. p-Adic Valued Distributions in Mathematical Physics , 1994 .
[15] Igor Volovich,et al. p-adic string , 1987 .
[16] Sergio Albeverio,et al. A random walk on p-adics - the generator and its spectrum , 1994 .
[17] J. Glimm,et al. Quantum Physics: A Functional Integral Point of View , 1981 .
[18] Edward Witten,et al. ADELIC STRING AMPLITUDES , 1987 .