A stochastic space-time model for intermittent precipitation occurrences

Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time $t$ random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

[1]  C. W. Richardson Wgen: A Model for Generating Daily Weather Variables , 2018 .

[2]  P. Kundu,et al.  A New Class of Probability Distributions for Describing the Spatial Statistics of Area-averaged Rainfall , 2015, 1509.05946.

[3]  M. Genton,et al.  A Matérn model of the spatial covariance structure of point rain rates , 2015, Stochastic Environmental Research and Risk Assessment.

[4]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[5]  D. Nychka,et al.  Exact fast computation of band depth for large functional datasets: How quickly can one million curves be ranked? , 2012 .

[6]  Marc G. Genton,et al.  Adjusted functional boxplots for spatio‐temporal data visualization and outlier detection , 2012 .

[7]  R. Katz,et al.  Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes , 2012 .

[8]  Prasun K. Kundu,et al.  Scale dependence of spatiotemporal intermittence of rain , 2011 .

[9]  Patrice Abry,et al.  Fast and exact synthesis of stationary multivariate Gaussian time series using circulant embedding , 2011, Signal Process..

[10]  Mohammad Ahsanullah,et al.  On a new class of probability distributions , 2011, Appl. Math. Lett..

[11]  Fabio Sigrist,et al.  A dynamic nonstationary spatio-temporal model for short term prediction of precipitation , 2011, 1102.4210.

[12]  M. Genton,et al.  Functional Boxplots , 2011 .

[13]  D. Maraun,et al.  Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user , 2010 .

[14]  Ali Tokay,et al.  Comparison of Rain Gauge Measurements in the Mid-Atlantic Region , 2010 .

[15]  Xiaogu Zheng,et al.  Simulation of multisite precipitation using an extended chain‐dependent process , 2010 .

[16]  B. Sansó,et al.  Extreme limit distribution of truncated models for daily rainfall , 2009 .

[17]  Pierre Ailliot,et al.  Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions , 2009 .

[18]  Michael L. Stein,et al.  Spatial interpolation of high-frequency monitoring data , 2009, 0906.1115.

[19]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[20]  Xiaogu Zheng,et al.  Simulation of spatial dependence in daily rainfall using multisite generators , 2008 .

[21]  Adrian E. Raftery,et al.  Probabilistic quantitative precipitation field forecasting using a two-stage spatial model , 2008, 0901.3484.

[22]  Henning Omre,et al.  T-distributed Random Fields: A Parametric Model for Heavy-tailedWell-log Data1 , 2007 .

[23]  C. Thorncroft,et al.  Climatology of Vertical Wind Shear over the Tropical Atlantic , 2006 .

[24]  Michael L. Stein,et al.  Statistical methods for regular monitoring data , 2005 .

[25]  Thomas L. Bell,et al.  Comparing satellite rainfall estimates with rain gauge data: Optimal strategies suggested by a spectral model , 2003 .

[26]  P. Guttorp,et al.  A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .

[27]  B. Sansó,et al.  Venezuelan Rainfall Data Analysed by Using a Bayesian Space–time Model , 1999 .

[28]  P. Diggle,et al.  Rainfall Modelling Using a Latent Gaussian Variable , 1997 .

[29]  C. Glasbey,et al.  Rainfall Modelling Using a Latent Gaussian Variable , 1997 .

[30]  Shaun Lovejoy,et al.  Causal space‐time multifractal processes: Predictability and forecasting of rain fields , 1996 .

[31]  Thomas M. Over,et al.  A space‐time theory of mesoscale rainfall using random cascades , 1996 .

[32]  Thomas L. Bell,et al.  A Study of the Sampling Error in Satellite Rainfall Estimates Using Optimal Averaging of Data and a Stochastic Model , 1996 .

[33]  R. Katz Use of conditional stochastic models to generate climate change scenarios , 1996 .

[34]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .

[35]  Paul S. P. Cowpertwait,et al.  A generalized point process model for rainfall , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  A. Bárdossy,et al.  SPACE-TIME MODEL FOR DAILY RAINFALL USING ATMOSPHERIC CIRCULATION PATTERNS , 1992 .

[37]  Michael L. Stein,et al.  Prediction and Inference for Truncated Spatial Data , 1992 .

[38]  V. Isham,et al.  A point process model for rainfall: further developments , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  David R. Cox,et al.  A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  Thomas L. Bell,et al.  A space‐time stochastic model of rainfall for satellite remote‐sensing studies , 1987 .

[41]  Valerie Isham,et al.  Some models for rainfall based on stochastic point processes , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  Edward C. Waymire,et al.  A Spectral Theory of Rainfall Intensity at the Meso‐β Scale , 1984 .

[43]  C. W. Richardson Stochastic simulation of daily precipitation, temperature, and solar radiation , 1981 .

[44]  P. N. Somerville,et al.  Some Models for Rainfall. , 1978 .

[45]  Richard W. Katz,et al.  Precipitation as a Chain-Dependent Process , 1977 .

[46]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[47]  Lucien Le Cam,et al.  A Stochastic Description of Precipitation , 1961 .