"Phytoplankton Composition from Space: towards a validation strategy for satellite algorithms"

January 2015 Astrid Bracher, Nick Hardman-Mountford, Takafumi Hirata, Stewart Bernard, Emmanuel Boss, Robert Brewin, Annick Bricaud, Vanda Brotas, Alison Chase, Aurea Ciotti, Jong-Kuk Choi, Lesley Clementson, Emmanuel Devred, Paul DiGiacomo, Cecile Dupouy, Toru Hirawake, Wonkook Kim, Tihomir Kostadinov, Ewa Kwiatkowska, Samantha Lavender, Tiffany Moisan, Colleen Mouw, Seunghyun Son, Heidi Sosik, Julia Uitz, Jeremy Werdell, and Guangming Zheng

[1]  Brenner Silva,et al.  Global Retrieval of Diatom Abundance Based on Phytoplankton Pigments and Satellite Data , 2014, Remote. Sens..

[2]  Craig M. Lee,et al.  Optical community index to assess spatial patchiness during the 2008 North Atlantic Bloom , 2014 .

[3]  S. Bernard,et al.  Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model. , 2014, Optics express.

[4]  S. Bernard,et al.  Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches. , 2014, Optics express.

[5]  Robert J. W. Brewin,et al.  Comparison of two methods to derive the size-structure of natural populations of phytoplankton , 2014 .

[6]  Chuanmin Hu,et al.  GOES Imager Shows Diurnal Changes of a Trichodesmium erythraeum Bloom on the West Florida Shelf , 2014, IEEE Geoscience and Remote Sensing Letters.

[7]  Annick Bricaud,et al.  Decomposition of in situ particulate absorption spectra , 2013 .

[8]  Robert J. W. Brewin,et al.  Deriving phytoplankton size classes from satellite data: Validation along a trophic gradient in the eastern Atlantic Ocean , 2013 .

[9]  Annick Bricaud,et al.  Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site). , 2013, Applied optics.

[10]  A. Barnard,et al.  Under the hood of satellite empirical chlorophyll a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties. , 2012, Optics express.

[11]  E. Marañón,et al.  Temperature, resources, and phytoplankton size structure in the ocean , 2012 .

[12]  H. M. Sosik,et al.  Distance maps to estimate cell volume from two‐dimensional plankton images , 2012 .

[13]  T. Westberry,et al.  An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific , 2011 .

[14]  Toru Hirawake,et al.  Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region , 2011 .

[15]  John R. Moisan,et al.  An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra , 2011 .

[16]  A. Bricaud,et al.  An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing , 2011 .

[17]  Peter V. Ridd,et al.  A simple, binary classification algorithm for the detection of Trichodesmium spp. within the Great Barrier Reef using MODIS imagery , 2011 .

[18]  S. Maritorena,et al.  Global variability of phytoplankton functional types from space: assessment via the particle size distribution , 2010 .

[19]  David A. Siegel,et al.  Retrieval of the particle size distribution from satellite ocean color observations , 2009 .

[20]  R. Smith,et al.  Phytoplankton size‐structure on the western shelf of the Antarctic Peninsula: a remote‐sensing approach , 2008 .

[21]  Robert J. Olson,et al.  Automated taxonomic classification of phytoplankton sampled with imaging‐in‐flow cytometry , 2007 .

[22]  R. Olson,et al.  A submersible imaging‐in‐flow instrument to analyze nano‐and microplankton: Imaging FlowCytobot , 2007 .

[23]  S. Thiria,et al.  Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. , 2007, Applied optics.

[24]  F. Shillington,et al.  The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling. , 2007, Optics express.

[25]  S. Thiria,et al.  Statistical analysis of a database of absorption spectra of phytoplankton and pigment concentrations using self-organizing maps. , 2006, Applied optics.

[26]  Dariusz Stramski,et al.  Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean , 2006 .

[27]  H. Claustre,et al.  Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll , 2006 .

[28]  Cécile Dupouy,et al.  Spectral diversity of phycoerythrins and diazotroph abundance in tropical waters , 2006 .

[29]  C. Reynolds The Ecology of Phytoplankton , 2006 .

[30]  B. Enquist,et al.  Rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[31]  Sushma G. Parab,et al.  Detection of Trichodesmium bloom patches along the eastern Arabian Sea by IRS-P4/OCM ocean color sensor and by in-situ measurements , 2005 .

[32]  Trevor Platt,et al.  Remote sensing of ocean colour: Towards algorithms for retrieval of pigment composition , 2005 .

[33]  D. Siegel,et al.  An improved bio‐optical model for the remote sensing of Trichodesmium spp. blooms , 2005 .

[34]  T. Platt,et al.  Discrimination of diatoms from other phytoplankton using ocean-colour data , 2004 .

[35]  Robert J. Olson,et al.  An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot , 2003 .

[36]  John J. Cullen,et al.  Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient , 2002 .

[37]  Sean G. Herring,et al.  Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution. , 2001, Applied optics.

[38]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[39]  M. Moline,et al.  Optical discrimination of a phytoplankton species in natural mixed populations , 2000 .

[40]  P. Falkowski,et al.  Bio‐optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. A reflectance model for remote sensing , 1999 .

[41]  P. Tréguer,et al.  Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the Bay of Brest (France) , 1997 .

[42]  Oscar Schofield,et al.  Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide dinoflagellate, Gymnodinium breve , 1997 .

[43]  Paul J. Harrison,et al.  Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton , 1994 .

[44]  Nicolas Hoepffner,et al.  Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter , 1993 .

[45]  Dale A. Kiefer,et al.  Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea , 1989 .

[46]  Karl H. Norris,et al.  In vivo spectrophotometric analysis of photosynthetic pigments in natural populations of phytoplankton , 1985 .

[47]  Victor Smetacek,et al.  Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions 1 , 1978 .

[48]  T. Patterson,et al.  Deep Sea Research Part II: Topical Studies in Oceanography , 2013 .

[49]  Guillaume Dirberg,et al.  Bio-optical properties of the marine cyanobacteria Trichodesmium spp. , 2008 .

[50]  Michael S. Twardowski,et al.  Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution , 2004 .

[51]  Alan Weidemann,et al.  Phytoplankton spectral absorption as influenced by community size structure and pigment composition , 2003 .

[52]  E. Carpenter,et al.  Detecting Trichodesmium blooms in SeaWiFS imagery , 2001 .