Critical Issues in the Commercialization of DMFC and Role of Membranes

Mobile telecommunication devices in the next generation require a new concept of quick charging and a long-lasting mobile energy source. The direct methanol fuel cell (DMFC) is becoming attractive, but there are critical issues involved in its commercialization with regard to the core technologies of catalyst, membrane, membrane electrode assembly (MEA), stack, and system. More importantly, the main role of the proton-conducting membrane is enhancing the energy and power density and affecting the other components in DMFC systems. Functions, current status, and technical approaches are discussed in terms of protonic conductivity, methanol permeability, water permeability, life cycle, and processing cost as well as interaction with other compartments. Materials such as perfluorinated and partially fluorinated membranes, hydrocarbon membranes, composite membranes, and other modified ionomers have been studied in connection with technology roadmap of membrane and mobile DMFC systems. These would explain the critical issues of DMFC and the role of membranes for commercialization.

[1]  Ulrich Stimming,et al.  ELECTROPHYSICAL PROPERTIES OF POLYMER ELECTROLYTE MEMBRANES : A RANDOM NETWORK MODEL , 1997 .

[2]  Shimshon Gottesfeld,et al.  Electro‐osmotic Drag of Water in Ionomeric Membranes New Measurements Employing a Direct Methanol Fuel Cell , 1997 .

[3]  Q. Xin,et al.  Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells , 2006 .

[4]  Hideki Kuroki,et al.  DMFC performances using a pore-filling polymer electrolyte membrane for portable usages , 2005 .

[5]  Zhe Wang,et al.  SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages , 2006 .

[6]  K. Okajima,et al.  Optimization of the sputter-deposited platinum cathode for a direct methanol fuel cell , 2005 .

[7]  J. Koberstein,et al.  Study of blend membranes consisting of NafionR and vinylidene fluoride–hexafluoropropylene copolymer , 1998 .

[8]  R. Wycisk,et al.  Sulfonated polyphosphazene ion-exchange membranes , 1996 .

[9]  Subbarao Surampudi,et al.  High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA)–poly(vinylidene fluoride) (PVDF) composite membranes , 2004 .

[10]  J. Leger,et al.  Alternative cathodes based on iron phthalocyanine catalysts for mini- or micro-DMFC working at room temperature , 2005 .

[11]  C. Walker Proton-conducting polymer membrane comprised of a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and 2-hydroxyethyl methacrylate , 2002 .

[12]  Thomas J. Schmidt,et al.  Performance and Durability of Membrane Electrode Assemblies Based on Radiation‐Grafted FEP‐g‐Polystyrene Membranes , 2004 .

[13]  K. Richau,et al.  Reduction of Methanol Permeability in Polyetherketone-Heteropolyacid Membranes , 2003 .

[14]  Young Taik Hong,et al.  Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton‐exchange membranes for fuel‐cell use above 100 °C , 2003 .

[15]  Klaus Gärtner,et al.  Performance Modeling of a Direct Methanol Fuel Cell , 2003 .

[16]  S. Srinivasan,et al.  International activities in DMFC R&D: status of technologies and potential applications , 2004 .

[17]  B. Smitha,et al.  Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells , 2004 .

[18]  G.J.M. Janssen,et al.  Water transport in the proton-exchange-membrane fuel cell: measurements of the effective drag coefficient , 2001 .

[19]  S. Holdcroft,et al.  Enhanced Conductivity in Morphologically Controlled Proton Exchange Membranes: Synthesis of Macromonomers by SFRP and Their Incorporation into Graft Polymers , 2002 .

[20]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[21]  J. Kerres,et al.  Synthesis of novel engineering polymers containing basic side groups and their application in acid–base polymer blend membranes , 2001 .

[22]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[23]  Keith Scott,et al.  Performance of the direct methanol fuel cell with radiation-grafted polymer membranes , 2000 .

[24]  J. Fontanella,et al.  Free volume and percolation in S-SEBS and fluorocarbon proton conducting membranes , 2002 .

[25]  Keith Scott,et al.  A semi-empirical model of the direct methanol fuel cell performance. Part I. Model development and verification , 2003 .

[26]  Polyphosphazene membranes. IV. Polymer morphology and proton conductivity in sulfonated poly[bis(3‐methylphenoxy)phosphazene] films , 2001 .

[27]  Shimshon Gottesfeld,et al.  High performance direct methanol polymer electrolyte fuel cells , 1996 .

[28]  Dong-Ryul Shin,et al.  Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell , 2003 .

[29]  Robert V. Morford,et al.  Phenylphosphonic acid functionalized poly[aryloxyphosphazenes] , 2002 .

[30]  Antonino S. Aricò,et al.  Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation , 1999 .

[31]  Dawn M. Crawford,et al.  Triblock copolymer ionomer membranes: Part I. Methanol and proton transport , 2003 .

[32]  M. Verbrugge Methanol Diffusion in Perfluorinated Ion‐Exchange Membranes , 1989 .

[33]  Marc Doyle,et al.  Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties , 2001 .

[34]  Jinli Qiao,et al.  New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA–PAMPS) for low temperature direct methanol fuel cells (DMFCs) , 2005 .

[35]  Keith Scott,et al.  A Numerical Model of a Liquid-Feed Solid Polymer Electrolyte DMFC and Its Experimental Validation , 2003 .

[36]  T. Gierke,et al.  The Cluster—Network Model of Ion Clustering in Perfluorosulfonated Membranes , 1982 .

[37]  N. Cornet,et al.  Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes , 2001 .

[38]  D. Peck,et al.  Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell , 2002 .

[39]  Won Choon Choi,et al.  Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell , 2001 .

[40]  Chang Houn Rhee,et al.  Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells , 2005 .

[41]  H. Yeager,et al.  Sodium Ion Diffusion in Nafion® Ion Exchange Membranes , 1980 .

[42]  H.-G. Haubold,et al.  Nano structure of NAFION: a SAXS study , 2001 .

[43]  Mervyn J Miles,et al.  In situ rehydration of perfluorosulphonate ion-exchange membrane studied by AFM , 2000 .

[44]  Robert B. Moore,et al.  Novel Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions. 1. Probe of ORMOSIL Phase Nanostructures by Infrared Spectroscopy , 1995 .

[45]  Keith Scott,et al.  The degree and effect of methanol crossover in the direct methanol fuel cell , 1998 .

[46]  V. Antonucci,et al.  Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells , 2003 .

[47]  P. J. Sebastian,et al.  A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell , 2003 .

[48]  Javit A. Drake,et al.  Evaluation of the Experimental Model for Methanol Crossover in DMFCs , 2004 .

[49]  Youngkwan Lee,et al.  Methanol and proton transport control by using layered double hydroxide nanoplatelets for direct methanol fuel cell , 2005 .

[50]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[51]  M. Mulder,et al.  Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications , 2002 .

[52]  M. Patri,et al.  Synthesis and characterization of SPE membrane based on sulfonated FEP‐g‐acrylic acid by radiation induced graft copolymerization for PEM fuel cell , 2004 .

[53]  Ih. Oh,et al.  Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering , 2002 .

[54]  W. Russel,et al.  Cracking in drying latex films. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[55]  Suzana P. Nunes,et al.  Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells , 2002 .

[56]  Ravindra Datta,et al.  Thermodynamics and Proton Transport in Nafion - III. Proton Transport in Nafion/Sulfated ZrO(2) Nanocomposite Membranes , 2005 .

[57]  H. Every,et al.  An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes , 2005 .

[58]  K. Scott,et al.  Grafted polymer electrolyte membrane for direct methanol fuel cells , 2005 .

[59]  J. Kerres Development of ionomer membranes for fuel cells , 2001 .

[60]  Robert B. Moore,et al.  TGA–FTi.r. investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites , 1998 .

[61]  C. Kontoyannis,et al.  New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole , 2001 .

[62]  G. Scherer,et al.  Block copolymer ionomers for ion conductive membranes , 2004 .

[63]  S. Nunes,et al.  Electrochemical impedance studies of hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution , 1998 .

[64]  A. Heinzel,et al.  Estimation of the membrane methanol diffusion coefficient from open circuit voltage measurements in a direct methanol fuel cell , 2002 .

[65]  Chao-Yang Wang,et al.  Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells , 2003 .

[66]  K. Friedrich,et al.  Modified Nafion®-based membranes for use in direct methanol fuel cells , 2002 .

[67]  Chenggang Xie,et al.  Development of a 2 W direct methanol fuel cell power source , 2004 .

[68]  H. Yeager,et al.  Perfluorinated Ionomer Membranes , 1982 .

[69]  Q. Xin,et al.  Sulfonated poly (ether ether ketone)/polyvinylidene fluoride polymer blends for direct methanol fuel cells , 2006 .

[70]  Kenneth A. Mauritz,et al.  Organic-Inorganic Hybrid Materials: Perfluorinated Ionomers as Sol-Gel Polymerization Templates for Inorganic Alkoxides , 1998 .

[71]  Sundergopal Sridhar,et al.  Separation of organic–organic mixtures by pervaporation—a review , 2004 .

[72]  Jung-Ki Park,et al.  Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC) , 2004 .

[73]  Suzana P. Nunes,et al.  Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: Morphology and thermal analysis , 1998 .

[74]  In-Hwan Oh,et al.  Operational characteristics of a 50 W DMFC stack , 2006 .

[75]  Hong Chang,et al.  Materials and processes for small fuel cells , 2002 .

[76]  Robert B. Moore,et al.  Nafion/ORMOSIL Hybrids via in Situ Sol−Gel Reactions. 3. Pyrene Fluorescence Probe Investigations of Nanoscale Environment , 1997 .

[77]  K. Kontturi,et al.  New ETFE-based membrane for direct methanol fuel cell , 2005 .

[78]  Shimshon Gottesfeld,et al.  Methanol transport through Nafion membranes : Electro-osmotic drag effects on potential step measurements , 2000 .

[79]  S. Nakao,et al.  Polymer Electrolyte Membranes with a Pore‐Filling Structure for a Direct Methanol Fuel Cell , 2003 .

[80]  Suzhen Ren,et al.  Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cells , 2005 .

[81]  Hyun Jae Kim,et al.  Nafion–Nafion/polyvinylidene fluoride–Nafion laminated polymer membrane for direct methanol fuel cells , 2004 .

[82]  Michael A. Hickner,et al.  Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes , 2002 .

[83]  Rajkumar Rajendran Polymer Electrolyte Membrane Technology for Fuel Cells , 2005 .

[84]  P. Avakian,et al.  Dielectric relaxation studies of perfluorocarboxylate polymers , 1993 .

[85]  H. Ha,et al.  Nano-silica layered composite membranes prepared by PECVD for direct methanol fuel cells , 2004 .