Logic-Based Methods for Optimization

This paper proposes a logic-based approach to optimization that combines solution methods from mathematical programming and logic programming. From mathematical programming it borrows strategies for exploiting structure that have logic-based analogs. From logic programming it borrows methods for extracting information that are unavailable in a traditional mathematical programming framework. Logic-based methods also provide a unified approach to solving optimization problems with both quantitative and logical constraints.

[1]  N. R. Natraj,et al.  A logic-based method for integer programming , 1994 .

[2]  Richard J. Wallace,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[3]  J. N. Hooker,et al.  Logic-Based Methods for Optimization: A Tutorial , 1994 .

[4]  R. Raman,et al.  RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 1991 .

[5]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[6]  Helmut Simonis,et al.  Propositional Calculus Problems in CHIP , 1993, WCLP.

[7]  John N. Hooker,et al.  A quantitative approach to logical inference , 1988, Decis. Support Syst..

[8]  S. Arnborg,et al.  Characterization and recognition of partial 3-trees , 1986 .

[9]  Hong Yan,et al.  Logic cuts for processing networks with fixed charges , 1994, Comput. Oper. Res..

[10]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[11]  Peter Barth Linear 0-1 Inequalities and Extended Clauses , 1993, LPAR.

[12]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[13]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[14]  J. K. Lowe Modelling with Integer Variables. , 1984 .

[15]  Alain Colmerauer,et al.  An introduction to Prolog III , 1989, CACM.

[16]  Barry Richards,et al.  Nogood Backmarking with Min-Conflict Repair in Constraint Satisfaction and Optimization , 1994, PPCP.

[17]  Gerald L. Thompson,et al.  A Computational Study of Satisfiability Algorithms for Propositional Logic , 1994, INFORMS J. Comput..

[18]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[19]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[20]  Leon Sterling,et al.  The Art of Prolog - Advanced Programming Techniques , 1986 .

[21]  Andreas Drexl,et al.  A comparison of logic and mixed-integer programming solvers for batch sequencing with sequence-dependent setups , 1993 .

[22]  Robert G. Jeroslow,et al.  Representability in mixed integer programmiing, I: Characterization results , 1987, Discret. Appl. Math..

[23]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[24]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[25]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..