Hall effect in protostellar disc formation and evolution

The Hall effect is recently shown to be efficient in magnetized dense molecular cores, and could lead to a bimodal formation of rotationally supported discs (RSDs) in the first core phase. However, how such Hall dominated systems evolve in the protostellar accretion phase remains unclear. We carry out 2D axisymmetric simulations including Hall effect and Ohmic dissipation, with realistic magnetic diffusivities computed from our equilibrium chemical network. We find that Hall effect only becomes efficient when the large population of very small grains (VSGs: $\lesssim$10 nm) is removed from the standard MRN size distribution. With such an enhanced Hall effect, however, the bimodality of disc formation does not continue into the main accretion phase. The outer part of the initial $\sim$40 AU disc formed in the anti-aligned configuration (${\bf \Omega \cdot B} 0$), disc formation is suppressed initially but a counter-rotating disc forms subsequently due to efficient azimuthal Hall drift. The counter-rotating disc first grows to $\sim$30 AU as Hall effect moves the magnetic field radially outward, but only the inner $\lesssim$10 AU RSD is long-lived like in the anti-aligned case. Besides removing VSGs, cosmic ray ionization rate should be below a few 10$^{-16}$ s$^{-1}$ for Hall effect to be efficient in disc formation. We conclude that Hall effect produces small $\lesssim$10--20 AU discs regardless of the polarity of the magnetic field, and that radially outward diffusion of magnetic fields remains crucial for disc formation and growth.

[1]  B. Commerçon,et al.  Impact of the Hall effect in star formation, improving the angular momentum conservation , 2019, Astronomy & Astrophysics.

[2]  M. Bate,et al.  Disc formation and fragmentation using radiative non-ideal magnetohydrodynamics , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  Dependence of Hall coefficient on grain size and cosmic ray rate and implication for circumstellar disc formation , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  Zhi-Yun Li,et al.  The Role of Magnetic Fields in the Formation of Protostellar Discs , 2018, Front. Astron. Space Sci..

[5]  Zhi-Yun Li,et al.  The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). V. 18 Candidate Disks around Class 0 and I Protostars in the Perseus Molecular Cloud , 2018, The Astrophysical Journal.

[6]  G. Chabrier,et al.  Impact of the Hall effect in star formation and the issue of angular momentum conservation , 2018, Astronomy & Astrophysics.

[7]  M. Saito,et al.  Possible Counterrotation between the Disk and Protostellar Envelope around the Class I Protostar IRAS 04169+2702 , 2018, The Astrophysical Journal.

[8]  Daniel J. Price,et al.  Hall effect-driven formation of gravitationally unstable discs in magnetized molecular cloud cores , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  H Germany,et al.  Cosmic-ray ionisation in circumstellar discs , 2018, Astronomy & Astrophysics.

[10]  P. Caselli,et al.  Effect of grain size on differential desorption of volatile species and on non-ideal MHD diffusivity , 2018, 1803.03062.

[11]  Astrophysics,et al.  Decoupling of magnetic fields in collapsing protostellar envelopes and disc formation and fragmentation , 2017, 1706.06504.

[12]  H. Liu,et al.  1000 au exterior arcs connected to the protoplanetary disk around HL Tauri , 2017, 1708.02384.

[13]  S. Okuzumi,et al.  The impact of the Hall effect during cloud core collapse:implications for circumstellar disk evolution , 2017, 1706.04363.

[14]  P. Lesaffre,et al.  Magnetic diffusivities in 3D radiative chemo-hydrodynamic simulations of protostellar collapse , 2017, 1702.05688.

[15]  J. Stone,et al.  Hall Effect–Mediated Magnetic Flux Transport in Protoplanetary Disks , 2016, 1612.03912.

[16]  Zhi-Yun Li,et al.  A triple protostar system formed via fragmentation of a gravitationally unstable disk , 2016, Nature.

[17]  L. Mundy,et al.  Spiral density waves in a young protoplanetary disk , 2016, Science.

[18]  Y. Tsukamoto Magnetic Field and Early Evolution of Circumstellar Disks , 2016, Publications of the Astronomical Society of Australia.

[19]  L. P. Karakatsanis,et al.  THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS , 2016 .

[20]  Zhi-Yun Li,et al.  THE VLA NASCENT DISK AND MULTIPLICITY SURVEY: FIRST LOOK AT RESOLVED CANDIDATE DISKS AROUND CLASS 0 AND I PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.03040.

[21]  Daniel J. Price,et al.  Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe? , 2015, 1512.01597.

[22]  R. Laureijs,et al.  Using cm observations to constrain the abundance of very small dust grains in Galactic cold cores , 2015, 1511.06626.

[23]  P. Hennebelle,et al.  Ambipolar diffusion in low-mass star formation - I. General comparison with the ideal magnetohydrodynamic case , 2015, 1509.05630.

[24]  X. Bai,et al.  ON THE GRAIN-MODIFIED MAGNETIC DIFFUSIVITIES IN PROTOPLANETARY DISKS , 2015, 1511.07199.

[25]  S. Kučas,et al.  CASCADES AFTER K-VACANCY PRODUCTION AND ADDITIONAL IONIZATION OR EXCITATION IN ATOMS OF LIGHT ELEMENTS , 2015 .

[26]  P. Armitage,et al.  Magnetically driven accretion in protoplanetary discs , 2015, 1508.00904.

[27]  Bimodality of circumstellar disk evolution induced by Hall current , 2015, 1506.07242.

[28]  S. Okuzumi,et al.  RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE: NONIDEAL MAGNETOHYDRODYNAMIC EFFECTS AND EARLY FORMATION OF CIRCUMSTELLAR DISKS , 2015, 1501.04102.

[29]  X. Bai HALL EFFECT CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. II. FULL 3D SIMULATIONS TOWARD THE OUTER DISK , 2014, 1409.2511.

[30]  Bo Zhao,et al.  ON THE ROLE OF PSEUDODISK WARPING AND RECONNECTION IN PROTOSTELLAR DISK FORMATION IN TURBULENT MAGNETIZED CORES , 2014, 1408.2374.

[31]  X. Bai HALL-EFFECT-CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. I. WIND SOLUTIONS AT THE INNER DISK , 2014, 1402.7102.

[32]  Matthew W. Kunz,et al.  Thanatology in protoplanetary discs - The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones , 2014, 1402.4133.

[33]  M. Hogerheijde,et al.  Rotationally-supported disks around Class I sources in Taurus: disk formation constraints , 2013, 1312.5716.

[34]  S. Inutsuka,et al.  Conditions for circumstellar disc formation: effects of initial cloud configuration and sink treatment , 2013, 1307.1747.

[35]  Matthew W. Kunz,et al.  Magnetic self-organization in Hall-dominated magnetorotational turbulence , 2013, 1306.5887.

[36]  L. Hartmann,et al.  MODELING THE RESOLVED DISK AROUND THE CLASS 0 PROTOSTAR L1527 , 2013, 1305.3604.

[37]  R. Klessen,et al.  Turbulence-induced disc formation in strongly magnetized cloud cores , 2013, 1302.4901.

[38]  Zhi-Yun Li,et al.  DOES MAGNETIC-FIELD–ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION? , 2013, 1301.6545.

[39]  P. Hennebelle,et al.  The influence of turbulence during magnetized core collapse and its consequences on low-mass star formation , 2013, 1301.3004.

[40]  L. Hartmann,et al.  A ∼0.2-solar-mass protostar with a Keplerian disk in the very young L1527 IRS system , 2012, Nature.

[41]  A. Abergel,et al.  Dust coagulation processes as constrained by far-infrared observations , 2012 .

[42]  M. Wardle,et al.  The Hall effect in accretion flows , 2012, 1208.5887.

[43]  S. Okuzumi,et al.  RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE: PROTOSTELLAR CORE FORMATION , 2012, 1206.3567.

[44]  P. Hennebelle,et al.  Protostellar disk formation and transport of angular momentum during magnetized core collapse , 2012, 1203.1193.

[45]  H. Hirashita Dust growth in the interstellar medium: how do accretion and coagulation interplay? , 2012, 1202.1345.

[46]  A. Lazarian,et al.  THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS , 2011, 1109.3716.

[47]  M. Wardle,et al.  The Hall effect in star formation , 2011, 1109.1370.

[48]  Zhi-Yun Li,et al.  NON-IDEAL MHD EFFECTS AND MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION , 2011, 1106.2620.

[49]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[50]  Zhi-Yun Li,et al.  DISK FORMATION IN MAGNETIZED CLOUDS ENABLED BY THE HALL EFFECT , 2011, 1101.3018.

[51]  Zhi-Yun Li,et al.  DISK FORMATION ENABLED BY ENHANCED RESISTIVITY , 2010, 1006.0793.

[52]  T. Mouschovias,et al.  The non-isothermal stage of magnetic star formation - II. Results , 2010, 1003.2722.

[53]  G. Howes Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas , 2009, 0903.4111.

[54]  T. Mouschovias,et al.  THE NONISOTHERMAL STAGE OF MAGNETIC STAR FORMATION. I. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION , 2008, 0812.1791.

[55]  Tamas I. Gombosi,et al.  Hall magnetohydrodynamics on block-adaptive grids , 2008, J. Comput. Phys..

[56]  R. Crutcher,et al.  Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations , 2008, 0802.2253.

[57]  M. Kunz On the linear stability of weakly ionized, magnetized planar shear flows , 2008, 0801.0974.

[58]  P. Hennebelle,et al.  Magnetic processes in a collapsing dense core I. Accretion and ejection , 2007, 0709.2886.

[59]  Zhi-Yun Li,et al.  Magnetic Braking and Protostellar Disk Formation: The Ideal MHD Limit , 2007, 0709.0445.

[60]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[61]  M. Wardle,et al.  Magnetic fields in protoplanetary disks , 2007, 0704.0970.

[62]  T. Downes,et al.  A three-dimensional numerical method for modelling weakly ionized plasmas , 2006, astro-ph/0612580.

[63]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. I. The Nonrotating Case , 2003, astro-ph/0311376.

[64]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003, astro-ph/0311377.

[65]  S. Falle A numerical scheme for multifluid magnetohydrodynamics , 2003, astro-ph/0308396.

[66]  R. Nishi,et al.  Mechanism of Magnetic Flux Loss in Molecular Clouds , 2002, astro-ph/0203223.

[67]  P. Caselli,et al.  Dense Cores in Dark Clouds. XIV. N2H+ (1-0) Maps of Dense Cloud Cores , 2002, astro-ph/0202173.

[68]  J. Stone,et al.  The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability. I. Local Axisymmetric Simulations , 2002, astro-ph/0201179.

[69]  P. Caselli,et al.  CO Depletion in the Starless Cloud Core L1544 , 1999 .

[70]  M. Wardle,et al.  The conductivity of dense molecular gas , 1998, astro-ph/9810468.

[71]  M. Wardle The Balbus-Hawley instability in weakly ionized discs , 1998, astro-ph/9809349.

[72]  P. Caselli,et al.  The Ionization Fraction in Dense Cloud Cores , 1998 .

[73]  James F. Drake,et al.  Transition to whistler mediated magnetic reconnection , 1994 .

[74]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[75]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[76]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[77]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[78]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .