Event-related phase reorganization may explain evoked neural dynamics

[1]  W. Klimesch,et al.  P1 and traveling alpha waves: evidence for evoked oscillations. , 2007, Journal of neurophysiology.

[2]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[3]  Ayumu Matani,et al.  Influence of seamlessness between pre- and poststimulus alpha rhythms on visual evoked potential , 2006, NeuroImage.

[4]  M. Kahana The Cognitive Correlates of Human Brain Oscillations , 2006, The Journal of Neuroscience.

[5]  Josep Marco-Pallarés,et al.  Modulation of spectral power and of phase resetting of EEG contributes differentially to the generation of auditory event-related potentials , 2006, NeuroImage.

[6]  O. Jensen,et al.  Posterior α activity is not phase-reset by visual stimuli , 2006 .

[7]  Simon Hanslmayr,et al.  Alpha phase reset contributes to the generation of ERPs. , 2006, Cerebral cortex.

[8]  Simon Hanslmayr,et al.  Distinguishing the evoked response from phase reset: A comment to Mäkinen et al. , 2006, NeuroImage.

[9]  Craig J. Brozinsky,et al.  Oscillatory EEG correlates of episodic trace decay. , 2006, Cerebral Cortex.

[10]  H. Heinze,et al.  The oscillatory dynamics of recognition memory and its relationship to event-related responses. , 2005, Cerebral cortex.

[11]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[12]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[13]  T. Picton,et al.  EEG spectral dynamics during discrimination of auditory and visual targets. , 2005, Brain research. Cognitive brain research.

[14]  Takashi Hamada,et al.  A neuromagnetic analysis of the mechanism for generating auditory evoked fields. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[15]  Karl J. Friston,et al.  Modelling event-related responses in the brain , 2005, NeuroImage.

[16]  W. Klimesch,et al.  Alpha phase synchronization predicts P1 and N1 latency and amplitude size. , 2005, Cerebral cortex.

[17]  W. Klimesch,et al.  Visual discrimination performance is related to decreased alpha amplitude but increased phase locking , 2005, Neuroscience Letters.

[18]  Hannu Tiitinen,et al.  Auditory event-related responses are generated independently of ongoing brain activity , 2005, NeuroImage.

[19]  Thomas Grunwald,et al.  Neural Bases of Cognitive ERPs: More than Phase Reset , 2004, Journal of Cognitive Neuroscience.

[20]  Clay B. Holroyd,et al.  Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. , 2004, Psychophysiology.

[21]  A. Engel,et al.  Cognitive functions of gamma-band activity: memory match and utilization , 2004, Trends in Cognitive Sciences.

[22]  Manuel Schabus,et al.  Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. , 2004, Brain research. Cognitive brain research.

[23]  Ankoor S. Shah,et al.  Neural dynamics and the fundamental mechanisms of event-related brain potentials. , 2004, Cerebral cortex.

[24]  Burkhard Maess,et al.  Memory-matches evoke human gamma-responses , 2004, BMC Neuroscience.

[25]  A. Fingelkurts,et al.  MAKING COMPLEXITY SIMPLER: MULTIVARIABILITY AND METASTABILITY IN THE BRAIN , 2004, The International journal of neuroscience.

[26]  S. Schiff,et al.  Interplay of Electroencephalogram Phase and Auditory-Evoked Neural Activity , 2003, The Journal of Neuroscience.

[27]  Stephen J. Anderson,et al.  Attentional modulation of oscillatory activity in human visual cortex , 2003, NeuroImage.

[28]  M. Kahana,et al.  Reset of human neocortical oscillations during a working memory task , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Barry,et al.  Preferred EEG brain states at stimulus onset in a fixed interstimulus interval auditory oddball task, and their effects on ERP components. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[30]  C. Gerloff,et al.  Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency , 2003, The European journal of neuroscience.

[31]  B. Jansen,et al.  Phase synchronization of the ongoing EEG and auditory EP generation , 2003, Clinical Neurophysiology.

[32]  Aina Puce,et al.  Category-sensitive excitatory and inhibitory processes in human extrastriate cortex. , 2002, Journal of neurophysiology.

[33]  James M Kilner,et al.  Event-related brain dynamics , 2002, Trends in Neurosciences.

[34]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[35]  A. Yonelinas The Nature of Recollection and Familiarity: A Review of 30 Years of Research , 2002 .

[36]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[37]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[38]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[39]  Anthony D. Wagner,et al.  Synchronicity: when you're gone I'm lost without a trace? , 2001, Nature Neuroscience.

[40]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[41]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[42]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[43]  Julie Clayton,et al.  Ripe fruit leads to a ripe old age , 2001, Trends in Cognitive Sciences.

[44]  J. Kelso,et al.  Cortical coordination dynamics and cognition , 2001, Trends in Cognitive Sciences.

[45]  R. Barry,et al.  EEG alpha activity and the ERP to target stimuli in an auditory oddball paradigm. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[46]  Peter A. Tass,et al.  Stochastic Phase Resetting : A Theory for Deep Brain Stimulation , 2000 .

[47]  M. Steriade Coherent oscillations and short-term plasticity in corticothalamic networks , 1999, Trends in Neurosciences.

[48]  Friedemann Pulvermüller,et al.  High-frequency brain activity: perception or active memory? , 1999, Trends in Cognitive Sciences.

[49]  W. Klimesch Brain Function and Oscillations, Vol. II: Integrative Brain Function. Neurophysiology and Cognitive Processes, edited by Erol Basar , 1999, Trends in Cognitive Sciences.

[50]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[51]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[52]  J. Polich,et al.  On the relationship between EEG and P300: individual differences, aging, and ultradian rhythms. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[53]  W. Klimesch EEG-alpha rhythms and memory processes. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[54]  M. Brandt Visual and auditory evoked phase resetting of the alpha EEG. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[55]  Matthias M. Müller,et al.  Visually induced gamma-band responses in human electroencephalographic activity — a link to animal studies , 1996, Experimental Brain Research.

[56]  P. König,et al.  Correlated firing in sensory-motor systems , 1995, Current Opinion in Neurobiology.

[57]  D. Olton,et al.  Bidirectional Modulation of Scopolamine-Induced Working Memory Impairments by Muscarinic Activation of the Medial Septal Area , 1995, Neurobiology of Learning and Memory.

[58]  U. Staubli,et al.  Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  Michael Recce,et al.  A model of hippocampal function , 1994, Neural Networks.

[60]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[61]  Richard F. Thompson,et al.  Parallel augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats , 1994 .

[62]  G Lynch,et al.  Facilitation of glutamate receptors enhances memory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D M Rice,et al.  Some Evidence in Support of a Relationship between Human Auditory Signal-Detection Performance and the Phase of the Alpha Cycle , 1989, Perceptual and motor skills.

[64]  C. Pavlides,et al.  Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of θ-rhythm , 1988, Brain Research.

[65]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[66]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[67]  E. John,et al.  Perceptual framing and cortical alpha rhythm , 1981, Neuropsychologia.

[68]  G. Pfurtscheller,et al.  Event-related cortical desynchronization detected by power measurements of scalp EEG. , 1977, Electroencephalography and clinical neurophysiology.

[69]  J. W. Osselton,et al.  The influence of the EEG alpha rhythm on the perception of visual stimuli. , 1974, Psychophysiology.

[70]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[71]  R. E. Dustman,et al.  PHASE OF ALPHA BRAIN WAVES, REACTION TIME AND VISUALLY EVOKED POTENTIALS. , 1965, Electroencephalography and clinical neurophysiology.

[72]  W. Klimesch,et al.  Upper alpha ERD and absolute power: their meaning for memory performance. , 2006, Progress in brain research.

[73]  G. Buzsáki Rhythms of the brain , 2006 .

[74]  Eric A. Zilli,et al.  Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior , 2005, Hippocampus.

[75]  Wolfgang Klimesch,et al.  Evoked oscillations and Early Components of Event-Related Potentials: an Analysis , 2004, Int. J. Bifurc. Chaos.

[76]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[77]  S. Hillyard,et al.  Identification of early visual evoked potential generators by retinotopic and topographic analyses , 1994 .

[78]  E. Basar,et al.  Enhancement of visual evoked potentials by stimulation during low prestimulus EEG stages. , 1993, The International journal of neuroscience.

[79]  E. Basar,et al.  Please Scroll down for Article International Journal of Neuroscience Prestimulus Eeg-activity Strongly Influences the Auditory Evoked Vertex Response: a New Method for Selective Averaging , 2022 .

[80]  M. Brandt,et al.  The relationship between prestimulus-alpha amplitude and visual evoked potential amplitude. , 1991, The International journal of neuroscience.

[81]  M. Brandt,et al.  Pre-stimulus spectral EEG patterns and the visual evoked response. , 1991, Electroencephalography and clinical neurophysiology.

[82]  Erol Başar,et al.  The EEG is a Quasi-Deterministic Signal Anticipating Sensory-Cognitive Tasks , 1989 .

[83]  E. Basar,et al.  Important associations among EEG-dynamics, event-related potentials, short-term memory and learning. , 1985, The International journal of neuroscience.

[84]  E. Basar EEG-brain dynamics: Relation between EEG and Brain evoked potentials , 1980 .