Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency

We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT) to the intensity of the coupling laser beam. A standing-wave coupling laser with a sinusoidally varying intensity yields tightly confined Raman excitations during the EIT process. The excitations, located near the nodes of the intensity profile, have a width of 100 nm. The experiment is performed using ultracold Rb atoms trapped in an optical dipole trap, and atomic localization is achieved with EIT pulses that are approximately 100 ns long. To probe subwavelength atom localization, we have developed a technique that can measure the width of the atomic excitations with nanometer spatial resolution.

[1]  S. Hell Far-field optical nanoscopy , 2010 .

[2]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[3]  D. Yavuz,et al.  Generation of high-power laser light with Gigahertz splitting. , 2007, The Review of scientific instruments.

[4]  M. S. Zubairy,et al.  Atom localization via resonance fluorescence , 2000 .

[5]  M. S. Zubairy,et al.  Subwavelength atom localization via amplitude and phase control of the absorption spectrum , 2005, quant-ph/0502158.

[6]  M. S. Zubairy,et al.  Quantum optics: Quantum theory of the laser – density operator approach , 1997 .

[7]  Thomas Quantum theory of atomic position measurement using optical fields. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[8]  J. Szonert,et al.  Electromagnetically Induced Transparency , 2010 .

[9]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[10]  Thomas,et al.  Precision position measurement of moving atoms using optical fields. , 1991, Physical Review Letters.

[11]  Edward S. Fry,et al.  ULTRASLOW GROUP VELOCITY AND ENHANCED NONLINEAR OPTICAL EFFECTS IN A COHERENTLY DRIVEN HOT ATOMIC GAS , 1999, quant-ph/9904031.

[12]  M. S. Zubairy,et al.  Resonant interferometric lithography beyond the diffraction limit , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[13]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[14]  Irina Novikova,et al.  Optimal control of light pulse storage and retrieval. , 2007, Physical review letters.

[15]  S. Hell,et al.  Far-field optical imaging and manipulation of individual spins with nanoscale resolution. , 2010 .

[16]  I. Novikova,et al.  Optimal light storage in atomic vapor , 2008, 0805.3348.

[17]  M. S. Zubairy,et al.  Spectroscopic measurement of an atomic wave function , 2003 .

[18]  Hoonsoo Kang,et al.  Observation of large Kerr nonlinearity at low light intensities. , 2003, Physical review letters.

[19]  D. Yavuz,et al.  Nanoscale resolution fluorescence microscopy using electromagnetically induced transparency , 2007 .

[20]  P. Knight,et al.  Localizing an atom via quantum interference , 2001 .

[21]  J. T. Green,et al.  Refractive index enhancement with vanishing absorption in an atomic vapor. , 2008, Physical review letters.

[22]  Holland,et al.  Measurement induced localization from spontaneous decay. , 1996, Physical review letters.

[23]  J. Thomas Uncertainty-limited position measurement of moving atoms using optical fields. , 1989, Optics letters.

[24]  G. Agarwal,et al.  Subwavelength atom localization via coherent population trapping , 2005, quant-ph/0505014.

[25]  P Grangier,et al.  Entanglement of two individual neutral atoms using Rydberg blockade. , 2009, Physical review letters.

[26]  Xiangming Hu,et al.  Sub-half-wavelength localization of an atom via trichromatic phase control , 2007 .

[27]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[28]  J. Mompart,et al.  Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage , 2012, 1301.1546.

[29]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[30]  Xiao,et al.  Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms. , 1995, Physical review letters.

[31]  M. S. Zubairy,et al.  Atom localization via Ramsey interferometry: A coherent cavity field provides a better resolution , 1997 .

[32]  M. Scully,et al.  Slow, Ultraslow, Stored, and Frozen Light , 2002 .

[33]  Marlan O. Scully,et al.  Optical imaging beyond the diffraction limit via dark states , 2008, 0803.2557.

[34]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[35]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[36]  M. S. Zubairy,et al.  Measurement of the separation between atoms beyond diffraction limit , 2005, quant-ph/0508010.

[37]  Lukin,et al.  Dark-state polaritons in electromagnetically induced transparency , 2000, Physical review letters.

[38]  Robert W Boyd,et al.  Observation of Backward Pulse Propagation Through a Medium with a Negative Group Velocity , 2006, Science.

[39]  M. Xiao,et al.  Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. , 2001, Physical review letters.

[40]  Sarah E. Harris,et al.  Photon Switching by Quantum Interference , 1998 .

[41]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[42]  Harris,et al.  Electromagnetically induced transparency: Propagation dynamics. , 1995, Physical review letters.

[43]  Collett,et al.  Measurement-induced diffraction and interference of atoms. , 1992, Physical review letters.

[44]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[45]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[46]  M. S. Zubairy,et al.  Subwavelength optical lattices induced by position-dependent dark states , 2011 .

[47]  Coherent patterning of matter waves with subwavelength localization , 2009 .

[48]  Thomas,et al.  Suboptical wavelength position measurement of moving atoms using optical fields. , 1993, Physical review letters.

[49]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[50]  Xiao,et al.  Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[51]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[52]  P. Zoller,et al.  Coherent quantum optical control with subwavelength resolution. , 2007, Physical review letters.

[53]  G. Rempe,et al.  DIFFRACTION OF ATOMS FROM A MEASUREMENT INDUCED GRATING , 1997 .

[54]  D. Yavuz,et al.  Observation of atomic localization using electromagnetically induced transparency , 2010, 1011.2754.

[55]  Olga Kocharovskaya,et al.  Amplification and lasing without inversion , 1992 .

[56]  Collett,et al.  Measurement of atomic motion in a standing light field by homodyne detection. , 1995, Physical review letters.

[57]  Localization of atomic ensembles via superfluorescence , 2006, quant-ph/0611148.

[58]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[59]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[60]  Lukin,et al.  Nonlinear optics and quantum entanglement of ultraslow single photons , 2000, Physical review letters.