Distributed Amplifier Based on Monolayer Graphene Field Effect Transistor

Due to the ultra-high carrier mobility and ultralow resistivity of Graphene channel, a Graphene field effect transistor (GFET) is an interesting candidate for future RF and microwave electronics. I...

[1]  K. J. Kuhn,et al.  Considerations for Ultimate CMOS Scaling , 2012, IEEE Transactions on Electron Devices.

[2]  E. Pop,et al.  Mobility and Saturation Velocity in Graphene on SiO2 , 2010, 1005.2711.

[3]  Yo-Sheng Lin,et al.  A High-Performance Distributed Amplifier Using Multiple Noise Suppression Techniques , 2011, IEEE Microwave and Wireless Components Letters.

[4]  K. Gleason,et al.  A DC-12 GHz monolithic GaAsFET distributed amplifier , 1982, IEEE Transactions on Electron Devices.

[5]  Ping Chen,et al.  A 22–31 GHz Distributed Amplifier Based on High-Pass Transmission Lines Using 0.18 $\mu{\rm m}$ CMOS Technology , 2011, IEEE Microwave and Wireless Components Letters.

[6]  Aachen,et al.  A Graphene Field-Effect Device , 2007, IEEE Electron Device Letters.

[7]  Alberto Valdes Garcia,et al.  Graphene radio frequency receiver integrated circuit , 2014, Nature Communications.

[8]  Jan Stake,et al.  10 dB small-signal graphene FET amplifier , 2012 .

[9]  K. Shepard,et al.  Current saturation in zero-bandgap, top-gated graphene field-effect transistors. , 2008, Nature nanotechnology.

[10]  X. Hong,et al.  High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. , 2008, Physical review letters.

[11]  K. Yhland,et al.  A Subharmonic Graphene FET Mixer , 2012, IEEE Electron Device Letters.

[12]  D. Akinwande,et al.  An exactly solvable model for the graphene transistor in the quantum capacitance limit , 2012 .

[13]  E. Pop,et al.  Gigahertz integrated graphene ring oscillators. , 2013, ACS nano.

[14]  M. Rodwell,et al.  112-GHz, 157-GHz, and 180-GHz InP HEMT traveling-wave amplifiers , 1998 .

[15]  Eduard Alarcón,et al.  Design exploration of graphene-FET based ring-oscillator circuits: A test-bench for large-signal compact models , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[16]  H. Kurz,et al.  Graphene field-effect devices , 2007 .

[17]  Phaedon Avouris,et al.  An Ambipolar Virtual-Source-Based Charge-Current Compact Model for Nanoscale Graphene Transistors , 2014, IEEE Transactions on Nanotechnology.

[18]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[19]  K. Jenkins,et al.  Dual-Gate Graphene FETs With $f_{T}$ of 50 GHz , 2009, IEEE Electron Device Letters.

[20]  Massoud Dousti,et al.  A High Bandwidth (DC-40 GHz) Pseudo Differential Distributed Amplifier in 0.18-μm RF CMOS , 2017, J. Circuits Syst. Comput..

[21]  F. Schwierz,et al.  Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels , 2010 .

[22]  X. Duan,et al.  High-frequency self-aligned graphene transistors with transferred gate stacks , 2012, Proceedings of the National Academy of Sciences.

[23]  Laura Polloni,et al.  Graphene audio voltage amplifier. , 2012 .

[24]  Y. Hao,et al.  Graphene Field-Effect Transistor Model With Improved Carrier Mobility Analysis , 2015, IEEE Transactions on Electron Devices.

[25]  D. Jiménez Explicit Drain Current, Charge and Capacitance Model of Graphene Field-Effect Transistors , 2011, IEEE Transactions on Electron Devices.

[26]  J. Stake,et al.  A Large-Signal Graphene FET Model , 2012, IEEE Transactions on Electron Devices.

[27]  Kuo-Liang Deng,et al.  Design and analysis of DC-to-14-GHz and 22-GHz CMOS cascode , 2004 .

[28]  Michael B. Henry,et al.  SPICE-compatible compact model for graphene field-effect transistors , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[29]  Saul Rodriguez,et al.  A Comprehensive Graphene FET Model for Circuit Design , 2013, IEEE Transactions on Electron Devices.

[30]  Jing Kong,et al.  Graphene-on-Insulator Transistors Made Using C on Ni Chemical-Vapor Deposition , 2009, IEEE Electron Device Letters.

[31]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[32]  Huei Wang,et al.  A Novel Distributed Amplifier With High Gain, Low Noise, and High Output Power in ${\hbox{0.18-}} \mu{\hbox {m}}$ CMOS Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[33]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[34]  D. Nezich,et al.  Graphene Frequency Multipliers , 2009, IEEE Electron Device Letters.

[35]  Abdelhalim Slimane,et al.  Bandwidth improvement technique of distributed amplifiers using combined filtering structures , 2011 .

[36]  J. Kong,et al.  Compact Virtual-Source Current–Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors , 2011, IEEE Transactions on Electron Devices.

[37]  Thomas Zimmer,et al.  Versatile Compact Model for Graphene FET Targeting Reliability-Aware Circuit Design , 2015, IEEE Transactions on Electron Devices.

[38]  B. Al-Hashimi,et al.  Multilayer Graphene FET Compact Circuit-Level Model With Temperature Effects , 2014, IEEE Transactions on Nanotechnology.

[39]  D. Jiménez,et al.  An Accurate and Verilog-A Compatible Compact Model for Graphene Field-Effect Transistors , 2014, IEEE Transactions on Nanotechnology.

[40]  S. Vishvakarma,et al.  A Unified Scalable Quasi-Ballistic Transport Model of GFET for Circuit Simulations , 2018, IEEE Transactions on Electron Devices.

[41]  H. Happy,et al.  Scalable Electrical Compact Modeling for Graphene FET Transistors , 2013, IEEE Transactions on Nanotechnology.

[42]  L. D. Reynolds,et al.  A Monolithic GaAs 1-13-GHz Traveling-Wave Amplifier , 1982 .

[43]  Thomas Zimmer,et al.  A Large-Signal Monolayer Graphene Field-Effect Transistor Compact Model for RF-Circuit Applications , 2017, IEEE Transactions on Electron Devices.

[44]  C. S. Aitchison,et al.  The Intrinsic Noise Figure of the MESFET Distributed Amplifier , 1985 .