Thermally Triggered Degradation of Transient Electronic Devices

Thermally triggered transient electronics using wax-encapsulated acid, which enable rapid device destruction via acidic degradation of the metal electronic components are reported. Using a cyclic poly(phthalaldehyde) (cPPA) substrate affords a more rapid destruction of the device due to acidic depolymerization of cPPA.

[1]  John A Rogers,et al.  Materials for Programmed, Functional Transformation in Transient Electronic Systems , 2015, Advanced materials.

[2]  John A Rogers,et al.  Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics , 2014, Advanced materials.

[3]  M. R. Kessler,et al.  Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics , 2014 .

[4]  Huanyu Cheng,et al.  Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics , 2014 .

[5]  Yonggang Huang,et al.  Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. , 2014, ACS nano.

[6]  Xian Huang,et al.  High‐Performance Biodegradable/Transient Electronics on Biodegradable Polymers , 2014, Advanced materials.

[7]  Heather J Kulik,et al.  Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer , 2014, Nature Chemistry.

[8]  Yonggang Huang,et al.  Dissolvable Metals for Transient Electronics , 2014 .

[9]  Joshua A. Kaitz,et al.  End group characterization of poly(phthalaldehyde): surprising discovery of a reversible, cationic macrocyclization mechanism. , 2013, Journal of the American Chemical Society.

[10]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[11]  S. Köstler Polyaldehydes: homopolymers, block copolymers and promising applications , 2012 .

[12]  B. Blaiszik,et al.  Autonomic Shutdown of Lithium‐Ion Batteries Using Thermoresponsive Microspheres , 2012 .

[13]  R. Langer,et al.  A magnetically triggered composite membrane for on-demand drug delivery. , 2009, Nano letters.

[14]  Michael J Sailor,et al.  Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. , 2009, Cancer research.

[15]  M. Mellema,et al.  Wax encapsulation of water-soluble compounds for application in foods , 2006, Journal of microencapsulation.

[16]  N. Sottos,et al.  Wax‐Protected Catalyst Microspheres for Efficient Self‐Healing Materials , 2005 .

[17]  Min Wu,et al.  Environmental benefits of methanesulfonic acid. Comparative properties and advantages , 1999 .

[18]  Ramakant,et al.  Raman and infrared spectra of tere-phthalaldehyde , 1982 .