HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases

Horizontal pleiotropy, where one variant has independent effects on multiple traits, is important for our understanding of the genetic architecture of human phenotypes. We developed a method to quantify horizontal pleiotropy using genome-wide association summary statistics and applied it to 372 heritable phenotypes measured in 361,194 UK Biobank individuals. We observed horizontal pleiotropy is: 1) pervasive throughout the human genome; 2) especially prominent among highly polygenic phenotypes; 3) detected in 24,968 variants in 7,831 loci; and 4) enriched in active regulatory regions. Our results highlight the central role horizontal pleiotropy plays in the genetic architecture of human phenotypes.

[1]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[2]  Joseph K. Pickrell,et al.  Detection and interpretation of shared genetic influences on 42 human traits , 2015, Nature Genetics.

[3]  Nicholas J Timpson,et al.  Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity. , 2013, Human molecular genetics.

[4]  Steve D. M. Brown,et al.  High-throughput discovery of novel developmental phenotypes , 2017 .

[5]  Fabian J Theis,et al.  Genome-wide association analyses identify 18 new loci associated with serum urate concentrations , 2012, Nature Genetics.

[6]  N. Sheehan,et al.  A framework for the investigation of pleiotropy in two‐sample summary data Mendelian randomization , 2017, Statistics in medicine.

[7]  Scott M. Williams,et al.  The ubiquity of pleiotropy in human disease , 2017, Human Genetics.

[8]  Trans effects on gene expression can drive omnigenic inheritance , 2018 .

[9]  Inês Barroso,et al.  A genome-wide association meta-analysis identifies new childhood obesity loci , 2012, Nature Genetics.

[10]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[11]  Scott M. Williams,et al.  Shadows of complexity: what biological networks reveal about epistasis and pleiotropy , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  Uimc Helq Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways , 2012 .

[13]  W. G. Hill,et al.  Variation maintained in quantitative traits with mutation–selection balance: pleiotropic side-effects on fitness traits , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  Tom R. Gaunt,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[15]  F. Agakov,et al.  Abundant pleiotropy in human complex diseases and traits. , 2011, American journal of human genetics.

[16]  Toshiko Tanaka,et al.  Discovering patterns of pleiotropy in genome-wide association studies , 2018, bioRxiv.

[17]  Yang I Li,et al.  An Expanded View of Complex Traits: From Polygenic to Omnigenic , 2017, Cell.

[18]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[19]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[20]  Susanne Walitza,et al.  Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. , 2010, Journal of the American Academy of Child and Adolescent Psychiatry.

[21]  Shinichi Morishita,et al.  SCMD: Saccharomyces cerevisiae Morphological Database , 2004, Nucleic Acids Res..

[22]  B. Neale,et al.  Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.

[23]  Tanya M. Teslovich,et al.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways , 2012, Nature Genetics.

[24]  Donal N. Gorman,et al.  Using Multivariable Mendelian Randomization to Disentangle the Causal Effects of Lipid Fractions , 2014, PloS one.

[25]  S. Purcell,et al.  Pleiotropy in complex traits: challenges and strategies , 2013, Nature Reviews Genetics.

[26]  David M. Evans,et al.  A novel common variant in DCST2 is associated with length in early life and height in adulthood , 2014, Human molecular genetics.

[27]  Josée Dupuis,et al.  Meta‐analysis of gene‐environment interaction: joint estimation of SNP and SNP × environment regression coefficients , 2011, Genetic epidemiology.

[28]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[29]  T. VanderWeele,et al.  Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. , 2011, International journal of epidemiology.

[30]  Christian Gieger,et al.  Seventy-five genetic loci influencing the human red blood cell , 2012, Nature.

[31]  Andrew D. Johnson,et al.  Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways , 2012, Nature Genetics.

[32]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[33]  Christian Gieger,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[34]  Lars G Fritsche,et al.  Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies , 2017, Nature Genetics.

[35]  Mark I. McCarthy,et al.  A Central Role for GRB10 in Regulation of Islet Function in Man , 2014, PLoS genetics.

[36]  A. Price,et al.  Dissecting the genetics of complex traits using summary association statistics , 2016, bioRxiv.

[37]  Jianzhi Zhang,et al.  Genomic patterns of pleiotropy and the evolution of complexity , 2010, Proceedings of the National Academy of Sciences.

[38]  J. Murabito,et al.  Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty. , 2014, Human molecular genetics.

[39]  Ross M. Fraser,et al.  Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.

[40]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[41]  Jonathan P. Beauchamp,et al.  Genome-wide association study identifies 74 loci associated with educational attainment , 2016, Nature.

[42]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[43]  Tanya M. Teslovich,et al.  Common variants associated with plasma triglycerides and risk for coronary artery disease , 2013, Nature Genetics.

[44]  Manuel A. R. Ferreira,et al.  Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4 , 2011, Nature Genetics.

[45]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[46]  Annalise B. Paaby,et al.  The many faces of pleiotropy. , 2013, Trends in Genetics.

[47]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[48]  Aad van der Lugt,et al.  Common variants at 12q15 and 12q24 are associated with infant head circumference , 2012, Nature Genetics.

[49]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[50]  Stephen Burgess,et al.  Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants , 2016, Epidemiology.

[51]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[52]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[53]  Kyle J. Gaulton,et al.  Genome-wide associations for birth weight and correlations with adult disease , 2016 .

[54]  Ming D. Li,et al.  Genome-wide meta-analyses identify multiple loci associated with smoking behavior , 2010, Nature Genetics.

[55]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[56]  N. Wray,et al.  A mega-analysis of genome-wide association studies for major depressive disorder , 2013, Molecular Psychiatry.

[57]  Tom R. Gaunt,et al.  Edinburgh Research Explorer Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function , 2022 .

[58]  Jun S. Liu,et al.  Genetics of rheumatoid arthritis contributes to biology and drug discovery , 2013 .

[59]  Christian Gieger,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[60]  L. Liang,et al.  Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. , 2016, Human molecular genetics.

[61]  Andrew D. Johnson,et al.  Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche , 2014, Nature.

[62]  Thomas E. Nichols,et al.  Common genetic variants influence human subcortical brain structures , 2015, Nature.

[63]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[64]  P. O’Reilly,et al.  Polygenic risk scores applied to a single cohort reveal pleiotropy among hundreds of human phenotypes , 2017, bioRxiv.

[65]  M. Daly,et al.  Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis , 2013, The Lancet.

[66]  K. Williams,et al.  Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. , 2012, Journal of the American College of Cardiology.

[67]  P. Elliott,et al.  Meta-Analysis of Genome-Wide Association Studies in >80 000 Subjects Identifies Multiple Loci for C-Reactive Protein Levels , 2011, Circulation.

[68]  John P. Overington,et al.  An atlas of genetic influences on human blood metabolites , 2014, Nature Genetics.

[69]  Karen L. Mohlke,et al.  Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals , 2012, PLoS genetics.

[70]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[71]  A. Price,et al.  Dissecting the genetics of complex traits using summary association statistics , 2016, Nature Reviews Genetics.