The Early to Middle Eocene Transition: An Integrated Calcareous Nannofossil and Stable Isotope Record From the Northwest Atlantic Ocean (Integrated Ocean Drilling Program Site U1410)
暂无分享,去创建一个
P. Bown | S. Bohaty | C. Agnini | T. Westerhold | Y. Yamamoto | C. Cappelli | M. D. Riu | V. Lobba | M. Riu | Yuhji Yamamoto
[1] M. Huber,et al. Synchronous tropical and polar temperature evolution in the Eocene , 2018, Nature.
[2] J. Zachos,et al. Global Extent of Early Eocene Hyperthermal Events: A New Pacific Benthic Foraminiferal Isotope Record From Shatsky Rise (ODP Site 1209) , 2018, Paleoceanography and Paleoclimatology.
[3] P. Lippert,et al. Data report: updated magnetostratigraphy for IODP Sites U1403, U1408, U1409, and U1410 , 2018 .
[4] J. Laskar,et al. Towards a robust and consistent middle Eocene astronomical timescale , 2018 .
[5] Claire E Huck,et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation , 2018, Nature Geoscience.
[6] J. Zachos,et al. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene , 2018 .
[7] J. Flores,et al. Variations to calcareous nannofossil CaCO 3 content during the middle Eocene C21r-H6 hyperthermal event ( 47.4 Ma) in the Gorrondatxe section (Bay of Biscay, western Pyrenees) , 2017 .
[8] G. Dickens,et al. Planktic foraminiferal response to early Eocene carbon cycle perturbations in the southeast Atlantic Ocean (ODP Site 1263) , 2017 .
[9] D. Hodell,et al. Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982 , 2017 .
[10] J. Zachos,et al. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? , 2017 .
[11] R. Wilkens,et al. Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma , 2017 .
[12] I. Raffi,et al. Calcareous nannofossil biostratigraphy: historical background and application in Cenozoic chronostratigraphy , 2017 .
[13] P. Bown,et al. Muted calcareous nannoplankton response at the Middle/Late Eocene Turnover event in the western North Atlantic Ocean , 2017 .
[14] J. Flores,et al. Changes to sea-surface characteristics during the middle Eocene (47.4 Ma) C21r-H6 event: evidence from calcareous nannofossil assemblages of the Gorrondatxe section (western Pyrenees) , 2017 .
[15] P. Bown,et al. Calcareous nannofossils from the Eocene North Atlantic Ocean (IODP Expedition 342 Sites U1403–1411). , 2017, Journal of Nannoplankton Research.
[16] B. Romans,et al. Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada , 2017 .
[17] P. Pearson,et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate , 2016, Nature.
[18] G. Dickens,et al. Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene , 2016 .
[19] G. Dickens,et al. Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section) , 2016 .
[20] I. Chan,et al. Vanishing coccolith vital effects with alleviated carbon limitation , 2015 .
[21] A. Phillips,et al. The onset of the Early Eocene Climatic Optimum at Branch Stream, Clarence River valley, New Zealand , 2015 .
[22] G. Dickens,et al. Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean , 2015 .
[23] R. Norris,et al. Persistence of carbon release events through the peak of early Eocene global warmth , 2014 .
[24] T. Horner,et al. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater , 2014 .
[25] G. Dickens,et al. Early Paleogene variations in the calcite compensation depth: new constraints using old boreholes across Ninetyeast Ridge in the Indian Ocean , 2014 .
[26] H. Pälike,et al. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes , 2014 .
[27] A. Roberts,et al. Middle Eocene to Late Oligocene Antarctic Glaciation/Deglaciation and Southern Ocean productivity , 2014 .
[28] M. Patzkowsky,et al. Calcareous nannoplankton ecology and community change across the Paleocene-Eocene Thermal Maximum , 2013, Paleobiology.
[29] S. Monechi,et al. Lutetian calcareous nannofossil events in the Agost section (Spain): implications toward a revision of the Middle Eocene biomagnetostratigraphy , 2013 .
[30] R. McKay,et al. Eocene cooling linked to early flow across the Tasmanian Gateway , 2013, Proceedings of the National Academy of Sciences.
[31] H. Pälike,et al. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes , 2012 .
[32] P. Pearson,et al. Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models , 2012 .
[33] Amit K. Ghosh,et al. Paleogene newfoundland sediment drifts , 2012 .
[34] L. Alegret,et al. An early Lutetian carbon‐cycle perturbation: Insights from the Gorrondatxe section (western Pyrenees, Bay of Biscay) , 2012 .
[35] D. Beerling,et al. Convergent Cenozoic CO 2 history , 2011 .
[36] H. Pälike,et al. Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from , 2011 .
[37] Appy Sluijs,et al. Orbital pacing of methane hydrate destabilization during the Palaeogene , 2011 .
[38] L. Kump,et al. Response of nannoplankton to early Eocene ocean destratification , 2011 .
[39] G. Dickens. Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events , 2011 .
[40] D. Beerling,et al. Convergent Cenozoic CO2 history , 2011 .
[41] G. Dickens,et al. Large-Amplitude Variations in Carbon Cycling and Terrestrial Weathering during the Latest Paleocene and Earliest Eocene: The Record at Mead Stream, New Zealand , 2011, The Journal of Geology.
[42] J. Hardenbol,et al. The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain , 2011 .
[43] S. Gibbs,et al. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon , 2011, Nature.
[44] H. Pälike,et al. Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys , 2010 .
[45] J. Zachos,et al. Early Palaeogene temperature evolution of the southwest Pacific Ocean , 2009, Nature.
[46] G. Muttoni,et al. Magneto-biostratigraphy of the Cicogna section (Italy): Implications for the late Paleocene–early Eocene time scale , 2009 .
[47] Heiko Pälike,et al. Integrated Ocean Drilling Program Expedition 320 Preliminary Report , 2009 .
[48] Fabio Florindo,et al. Coupled Greenhouse Warming and Deep Sea Acidification in the Middle Eocene , 2009 .
[49] Shijun Jiang,et al. Distinguishing the influence of diagenesis on the paleoecological reconstruction of nannoplankton across the Paleocene/Eocene Thermal Maximum: An example from the Kerguelen Plateau, southern Indian Ocean , 2009 .
[50] P. Bown,et al. Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: new evidence from Tanzania , 2009 .
[51] M. Huber,et al. Tropical sea temperatures in the high-latitude South Pacific during the Eocene , 2009 .
[52] Bridget S. Wade,et al. Major shifts in calcareous phytoplankton assemblages through the Eocene‐Oligocene transition of Tanzania and their implications for low‐latitude primary production , 2008 .
[53] S. Bohaty,et al. Middle Eocene-late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748 , 2008 .
[54] Gerald R. Dickens,et al. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.
[55] D. Kent,et al. Widespread formation of cherts during the early Eocene climate optimum , 2007 .
[56] F. Tateo,et al. Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps , 2007 .
[57] J. Dinarès‐Turell,et al. Biomagnetostratigraphic analysis of the Gorrondatxe section (Basque Country, Western Pyrenees): Its significance for the definition of the Ypresian/Lutetian boundary stratotype , 2006 .
[58] P. Bown,et al. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: implications for global productivity gradients , 2006 .
[59] B. Toman,et al. New Guidelines for δ13C Measurements , 2006 .
[60] D. Kent,et al. Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil response to climate variability , 2006 .
[61] I. Probert,et al. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation , 2005 .
[62] J. Zachos,et al. Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene , 2005, Science.
[63] G. Villa,et al. Eocene–Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications , 2004 .
[64] T. Bralower,et al. Nannofossil assemblage fluctuations during the Paleocene-Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): palaeoceanographic implications , 2004 .
[65] Jochen Erbacher,et al. Proceedings of the Ocean Drilling Program, 207 Initial Reports , 2004 .
[66] J. Wright,et al. Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n) , 2003 .
[67] Steven M Bohaty,et al. Significant Southern Ocean warming event in the late middle Eocene , 2003 .
[68] P. Ziveri,et al. Stable isotope ‘vital effects’ in coccolith calcite , 2003 .
[69] D. Mosher,et al. Demerara Rise: Equatorial Cretaceous and Paleogene Paleoceanographic Transect, Western Atlantic , 2002 .
[70] T. Bralower. Evidence of surface water oligotrophy during the Paleocene‐Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea , 2002 .
[71] L. Sloan,et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.
[72] A. Buccianti,et al. Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis , 2000 .
[73] I. Raffi. Precision and accuracy of nannofossil biostratigraphic correlation , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[74] D. Greenwood,et al. Eocene continental climates and latitudinal temperature gradients , 1995 .
[75] J. A. Wolfe. The eocene-oligocene transition , 1995 .
[76] S. W. Wise,et al. Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean , 1990 .
[77] P. Rabinowitz,et al. The Ocean Drilling Program , 1990, OCEANS '87.
[78] Wuchang Wei,et al. Paleogene calcareous nannofossil magnetobiochronology: Results from South Atlantic DSDP Site 516 , 1989 .
[79] J. Backman,et al. Morphometry of the Eocene nannofossil Reticulofenestra umbilicus lineage and its biochronological consequences , 1986 .
[80] J. Backman. Late Paleocene to middle Eocene calcareous nannofossil biochronology from the Shatsky Rise, Walvis Ridge and Italy , 1986 .
[81] C. Müller,et al. Current Tertiary and Quaternary calcareous nannoplankton stratigraphy and correlations , 1986 .
[82] W. Berggren,et al. Rb-Sr glauconite isochron of the Eocene Castle Hayne Limestone, North Carolina: Further discussion , 1984 .
[83] N. Shackleton,et al. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific oceans , 1983 .
[84] J. Kennett. Cenozoic evolution of Antarctic glaciation the Circum-Antarctic Ocean and their impact on global paleoceanography , 1977 .
[85] H. Okada,et al. The distribution of oceanic coccolithophorids in the Pacific , 1973 .
[86] F. Hilgen,et al. The Paleogene Period , 2012 .
[87] J. Self‐Trail,et al. Biostratigraphic and morphometric analyses of specimens from the calcareous nannofossil genus Tribrachiatus. , 2017, Journal of Nannoplankton Research.
[88] K. Reinhardt. Eocene Oligocene Climatic And Biotic Evolution , 2016 .
[89] R. Norris,et al. Paleogene Newfoundland Sediment Drifts and MDHDS Test , 2014 .
[90] P. Bown,et al. Calcareous nannofossils from the Paleogene equatorial Pacific (IODP Expedition 320 Sites U1331-1334). , 2012, Journal of Nannoplankton Research.
[91] D. Watkins,et al. Eocene calcareous nannofossil biostratigraphy and community structure from Exmouth Plateau, Eastern Indian Ocean (ODPSite 762) , 2012, Stratigraphy.
[92] S. Milanese,et al. Mid-Latitude calcareous nannofossil biostratigraphy and biochronology across the middle to late Eocene transition , 2010 .
[93] P. Bown,et al. A Paleogene calcareous microfossil Konservat-Lagerstätte from the Kilwa Group of coastal Tanzania , 2008 .
[94] F. Gregory,et al. Deep-time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies , 2007 .
[95] LF Reis. Techniques , 2007, Modern Pathology.
[96] J. Zachos. 65 Ma to Present Trends, Rhythms, and Aberrations in Global Climate , 2007 .
[97] P. Bown,et al. New Paleogene calcareous nannofossil taxa from coastal Tanzania: Tanzania Drilling Project Sites 11 to 14. , 2006, Journal of Nannoplankton Research.
[98] C. Billard,et al. What is new in coccolithophore biology , 2004 .
[99] R. D. Norris,et al. Mid-Eocene deep water, the Late Palaeocene Thermal Maximum and continental slope mass wasting during the Cretaceous-Palaeogene impact , 2001, Geological Society, London, Special Publications.
[100] D. Kroon,et al. Cretaceous-Palaeogene ocean and climate change in the subtropical North Atlantic , 2001, Geological Society, London, Special Publications.
[101] O Hammer-Muntz,et al. PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .
[102] M. Aubry. Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration , 1992 .
[103] S. W. Wise,et al. Eocene Calcareous Nannofossils, Deep Sea Drilling Project Site 605, Upper Continental Rise off New Jersey, U.S.A. , 1987 .
[104] H. Okada,et al. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975) , 1980 .
[105] G. P. Lohmann,et al. Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean , 1976 .
[106] D. Bukry. Low-latitude coccolith biostratigraphic zonation , 1973 .
[107] E. Martini. Standard Tertiary and Quaternary calcareous nannoplankton zonation , 1971 .