The Early to Middle Eocene Transition: An Integrated Calcareous Nannofossil and Stable Isotope Record From the Northwest Atlantic Ocean (Integrated Ocean Drilling Program Site U1410)

The early to middle Eocene is marked by prominent changes in calcareous nannofossil assemblages coinciding both with long‐term climate changes and modification of the North Atlantic deep ocean circulation. In order to assess the impact of Eocene climate change on surface water environmental conditions of the Northwest Atlantic, we developed calcareous nannoplankton assemblage data and bulk stable isotope records (δ18O and δ13C) across an early to middle Eocene interval (~52–43 Ma) at Integrated Ocean Drilling Program Site U1410 (Southeast Newfoundland Ridge, ~41°N). At this site, early Eocene sediments are pelagic nannofossil chalk, whereas middle Eocene deposits occur as clay‐rich drift sediments reflecting the progressive influence of northern‐sourced deep currents. Between the end of Early Eocene Climatic Optimum (EECO) and the Ypresian/Lutetian boundary, calcareous nannofossils switched from an assemblage mainly composed of warm‐water and oligotrophic taxa (Zygrhablithus, Discoaster, Sphenolithus, Coccolithus) to one dominated by the more temperate and eutrophic reticulofenestrids. The most prominent period of accelerated assemblage change occurred during a ~2‐Myr phase of relatively high bulk δ18O values possibly related to the post‐EECO cooling. Although the dominance of reticulofenestrids persisted unvaried throughout the middle Eocene interval, early Lutetian (~47.4 to 47 Ma) stable isotope records indicate a reversal in the paleoenvironmetal trends suggesting a potential restoration of warmer conditions. Importantly, our data indicate that the ~2‐Myr interval immediately following the EECO was crucial in establishing the modern calcareous nannofossil assemblage structure and also reveal that the establishment of Reticulofenestra‐dominated assemblage occurred prior to the onset of persistent deep current system in the Northwest Atlantic.

[1]  M. Huber,et al.  Synchronous tropical and polar temperature evolution in the Eocene , 2018, Nature.

[2]  J. Zachos,et al.  Global Extent of Early Eocene Hyperthermal Events: A New Pacific Benthic Foraminiferal Isotope Record From Shatsky Rise (ODP Site 1209) , 2018, Paleoceanography and Paleoclimatology.

[3]  P. Lippert,et al.  Data report: updated magnetostratigraphy for IODP Sites U1403, U1408, U1409, and U1410 , 2018 .

[4]  J. Laskar,et al.  Towards a robust and consistent middle Eocene astronomical timescale , 2018 .

[5]  Claire E Huck,et al.  Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation , 2018, Nature Geoscience.

[6]  J. Zachos,et al.  Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene , 2018 .

[7]  J. Flores,et al.  Variations to calcareous nannofossil CaCO 3 content during the middle Eocene C21r-H6 hyperthermal event ( 47.4 Ma) in the Gorrondatxe section (Bay of Biscay, western Pyrenees) , 2017 .

[8]  G. Dickens,et al.  Planktic foraminiferal response to early Eocene carbon cycle perturbations in the southeast Atlantic Ocean (ODP Site 1263) , 2017 .

[9]  D. Hodell,et al.  Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982 , 2017 .

[10]  J. Zachos,et al.  Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? , 2017 .

[11]  R. Wilkens,et al.  Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma , 2017 .

[12]  I. Raffi,et al.  Calcareous nannofossil biostratigraphy: historical background and application in Cenozoic chronostratigraphy , 2017 .

[13]  P. Bown,et al.  Muted calcareous nannoplankton response at the Middle/Late Eocene Turnover event in the western North Atlantic Ocean , 2017 .

[14]  J. Flores,et al.  Changes to sea-surface characteristics during the middle Eocene (47.4 Ma) C21r-H6 event: evidence from calcareous nannofossil assemblages of the Gorrondatxe section (western Pyrenees) , 2017 .

[15]  P. Bown,et al.  Calcareous nannofossils from the Eocene North Atlantic Ocean (IODP Expedition 342 Sites U1403–1411). , 2017, Journal of Nannoplankton Research.

[16]  B. Romans,et al.  Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada , 2017 .

[17]  P. Pearson,et al.  Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate , 2016, Nature.

[18]  G. Dickens,et al.  Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene , 2016 .

[19]  G. Dickens,et al.  Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section) , 2016 .

[20]  I. Chan,et al.  Vanishing coccolith vital effects with alleviated carbon limitation , 2015 .

[21]  A. Phillips,et al.  The onset of the Early Eocene Climatic Optimum at Branch Stream, Clarence River valley, New Zealand , 2015 .

[22]  G. Dickens,et al.  Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean , 2015 .

[23]  R. Norris,et al.  Persistence of carbon release events through the peak of early Eocene global warmth , 2014 .

[24]  T. Horner,et al.  Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater , 2014 .

[25]  G. Dickens,et al.  Early Paleogene variations in the calcite compensation depth: new constraints using old boreholes across Ninetyeast Ridge in the Indian Ocean , 2014 .

[26]  H. Pälike,et al.  Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes , 2014 .

[27]  A. Roberts,et al.  Middle Eocene to Late Oligocene Antarctic Glaciation/Deglaciation and Southern Ocean productivity , 2014 .

[28]  M. Patzkowsky,et al.  Calcareous nannoplankton ecology and community change across the Paleocene-Eocene Thermal Maximum , 2013, Paleobiology.

[29]  S. Monechi,et al.  Lutetian calcareous nannofossil events in the Agost section (Spain): implications toward a revision of the Middle Eocene biomagnetostratigraphy , 2013 .

[30]  R. McKay,et al.  Eocene cooling linked to early flow across the Tasmanian Gateway , 2013, Proceedings of the National Academy of Sciences.

[31]  H. Pälike,et al.  Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes , 2012 .

[32]  P. Pearson,et al.  Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models , 2012 .

[33]  Amit K. Ghosh,et al.  Paleogene newfoundland sediment drifts , 2012 .

[34]  L. Alegret,et al.  An early Lutetian carbon‐cycle perturbation: Insights from the Gorrondatxe section (western Pyrenees, Bay of Biscay) , 2012 .

[35]  D. Beerling,et al.  Convergent Cenozoic CO 2 history , 2011 .

[36]  H. Pälike,et al.  Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from , 2011 .

[37]  Appy Sluijs,et al.  Orbital pacing of methane hydrate destabilization during the Palaeogene , 2011 .

[38]  L. Kump,et al.  Response of nannoplankton to early Eocene ocean destratification , 2011 .

[39]  G. Dickens Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events , 2011 .

[40]  D. Beerling,et al.  Convergent Cenozoic CO2 history , 2011 .

[41]  G. Dickens,et al.  Large-Amplitude Variations in Carbon Cycling and Terrestrial Weathering during the Latest Paleocene and Earliest Eocene: The Record at Mead Stream, New Zealand , 2011, The Journal of Geology.

[42]  J. Hardenbol,et al.  The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain , 2011 .

[43]  S. Gibbs,et al.  Eocene global warming events driven by ventilation of oceanic dissolved organic carbon , 2011, Nature.

[44]  H. Pälike,et al.  Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys , 2010 .

[45]  J. Zachos,et al.  Early Palaeogene temperature evolution of the southwest Pacific Ocean , 2009, Nature.

[46]  G. Muttoni,et al.  Magneto-biostratigraphy of the Cicogna section (Italy): Implications for the late Paleocene–early Eocene time scale , 2009 .

[47]  Heiko Pälike,et al.  Integrated Ocean Drilling Program Expedition 320 Preliminary Report , 2009 .

[48]  Fabio Florindo,et al.  Coupled Greenhouse Warming and Deep Sea Acidification in the Middle Eocene , 2009 .

[49]  Shijun Jiang,et al.  Distinguishing the influence of diagenesis on the paleoecological reconstruction of nannoplankton across the Paleocene/Eocene Thermal Maximum: An example from the Kerguelen Plateau, southern Indian Ocean , 2009 .

[50]  P. Bown,et al.  Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: new evidence from Tanzania , 2009 .

[51]  M. Huber,et al.  Tropical sea temperatures in the high-latitude South Pacific during the Eocene , 2009 .

[52]  Bridget S. Wade,et al.  Major shifts in calcareous phytoplankton assemblages through the Eocene‐Oligocene transition of Tanzania and their implications for low‐latitude primary production , 2008 .

[53]  S. Bohaty,et al.  Middle Eocene-late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748 , 2008 .

[54]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[55]  D. Kent,et al.  Widespread formation of cherts during the early Eocene climate optimum , 2007 .

[56]  F. Tateo,et al.  Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps , 2007 .

[57]  J. Dinarès‐Turell,et al.  Biomagnetostratigraphic analysis of the Gorrondatxe section (Basque Country, Western Pyrenees): Its significance for the definition of the Ypresian/Lutetian boundary stratotype , 2006 .

[58]  P. Bown,et al.  Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: implications for global productivity gradients , 2006 .

[59]  B. Toman,et al.  New Guidelines for δ13C Measurements , 2006 .

[60]  D. Kent,et al.  Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil response to climate variability , 2006 .

[61]  I. Probert,et al.  A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation , 2005 .

[62]  J. Zachos,et al.  Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene , 2005, Science.

[63]  G. Villa,et al.  Eocene–Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications , 2004 .

[64]  T. Bralower,et al.  Nannofossil assemblage fluctuations during the Paleocene-Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): palaeoceanographic implications , 2004 .

[65]  Jochen Erbacher,et al.  Proceedings of the Ocean Drilling Program, 207 Initial Reports , 2004 .

[66]  J. Wright,et al.  Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n) , 2003 .

[67]  Steven M Bohaty,et al.  Significant Southern Ocean warming event in the late middle Eocene , 2003 .

[68]  P. Ziveri,et al.  Stable isotope ‘vital effects’ in coccolith calcite , 2003 .

[69]  D. Mosher,et al.  Demerara Rise: Equatorial Cretaceous and Paleogene Paleoceanographic Transect, Western Atlantic , 2002 .

[70]  T. Bralower Evidence of surface water oligotrophy during the Paleocene‐Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea , 2002 .

[71]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[72]  A. Buccianti,et al.  Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis , 2000 .

[73]  I. Raffi Precision and accuracy of nannofossil biostratigraphic correlation , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[74]  D. Greenwood,et al.  Eocene continental climates and latitudinal temperature gradients , 1995 .

[75]  J. A. Wolfe The eocene-oligocene transition , 1995 .

[76]  S. W. Wise,et al.  Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean , 1990 .

[77]  P. Rabinowitz,et al.  The Ocean Drilling Program , 1990, OCEANS '87.

[78]  Wuchang Wei,et al.  Paleogene calcareous nannofossil magnetobiochronology: Results from South Atlantic DSDP Site 516 , 1989 .

[79]  J. Backman,et al.  Morphometry of the Eocene nannofossil Reticulofenestra umbilicus lineage and its biochronological consequences , 1986 .

[80]  J. Backman Late Paleocene to middle Eocene calcareous nannofossil biochronology from the Shatsky Rise, Walvis Ridge and Italy , 1986 .

[81]  C. Müller,et al.  Current Tertiary and Quaternary calcareous nannoplankton stratigraphy and correlations , 1986 .

[82]  W. Berggren,et al.  Rb-Sr glauconite isochron of the Eocene Castle Hayne Limestone, North Carolina: Further discussion , 1984 .

[83]  N. Shackleton,et al.  Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific oceans , 1983 .

[84]  J. Kennett Cenozoic evolution of Antarctic glaciation the Circum-Antarctic Ocean and their impact on global paleoceanography , 1977 .

[85]  H. Okada,et al.  The distribution of oceanic coccolithophorids in the Pacific , 1973 .

[86]  F. Hilgen,et al.  The Paleogene Period , 2012 .

[87]  J. Self‐Trail,et al.  Biostratigraphic and morphometric analyses of specimens from the calcareous nannofossil genus Tribrachiatus. , 2017, Journal of Nannoplankton Research.

[88]  K. Reinhardt Eocene Oligocene Climatic And Biotic Evolution , 2016 .

[89]  R. Norris,et al.  Paleogene Newfoundland Sediment Drifts and MDHDS Test , 2014 .

[90]  P. Bown,et al.  Calcareous nannofossils from the Paleogene equatorial Pacific (IODP Expedition 320 Sites U1331-1334). , 2012, Journal of Nannoplankton Research.

[91]  D. Watkins,et al.  Eocene calcareous nannofossil biostratigraphy and community structure from Exmouth Plateau, Eastern Indian Ocean (ODPSite 762) , 2012, Stratigraphy.

[92]  S. Milanese,et al.  Mid-Latitude calcareous nannofossil biostratigraphy and biochronology across the middle to late Eocene transition , 2010 .

[93]  P. Bown,et al.  A Paleogene calcareous microfossil Konservat-Lagerstätte from the Kilwa Group of coastal Tanzania , 2008 .

[94]  F. Gregory,et al.  Deep-time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies , 2007 .

[95]  LF Reis Techniques , 2007, Modern Pathology.

[96]  J. Zachos 65 Ma to Present Trends, Rhythms, and Aberrations in Global Climate , 2007 .

[97]  P. Bown,et al.  New Paleogene calcareous nannofossil taxa from coastal Tanzania: Tanzania Drilling Project Sites 11 to 14. , 2006, Journal of Nannoplankton Research.

[98]  C. Billard,et al.  What is new in coccolithophore biology , 2004 .

[99]  R. D. Norris,et al.  Mid-Eocene deep water, the Late Palaeocene Thermal Maximum and continental slope mass wasting during the Cretaceous-Palaeogene impact , 2001, Geological Society, London, Special Publications.

[100]  D. Kroon,et al.  Cretaceous-Palaeogene ocean and climate change in the subtropical North Atlantic , 2001, Geological Society, London, Special Publications.

[101]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[102]  M. Aubry Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration , 1992 .

[103]  S. W. Wise,et al.  Eocene Calcareous Nannofossils, Deep Sea Drilling Project Site 605, Upper Continental Rise off New Jersey, U.S.A. , 1987 .

[104]  H. Okada,et al.  Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975) , 1980 .

[105]  G. P. Lohmann,et al.  Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean , 1976 .

[106]  D. Bukry Low-latitude coccolith biostratigraphic zonation , 1973 .

[107]  E. Martini Standard Tertiary and Quaternary calcareous nannoplankton zonation , 1971 .