Bayesian variable selection for logistic mixed model with nonparametric random effects

In analyzing correlated data or clustered data with linear or logistic mixed effects model, one commonly assumes that the random effects follow a normal distribution with mean zero. However, this assumption might not be appropriate in many cases. In particular, substantial violation of normality assumption might potentially impact the subset selection of variables in these models. In this article, we address the problem of joint selection of both fixed and random effects and bias control for random effects in nonparametric settings. An efficient Bayesian variable selection is implemented using a stochastic search Gibbs sampler to allow both fixed and random effects to be dropped effectively out of the model. The approach is illustrated using a simulation study and a real data example.

[1]  D. Dunson,et al.  Random Effects Selection in Linear Mixed Models , 2003, Biometrics.

[2]  L. Skovgaard NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .

[3]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[4]  J. Fabius Asymptotic behavior of bayes' estimates , 1963 .

[5]  M Davidian,et al.  Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data , 2001, Biometrics.

[6]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[7]  Tze Leung Lai,et al.  Nonparametric estimation in nonlinear mixed effects models , 2003 .

[8]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[9]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[10]  Peter Müller,et al.  CENTER-ADJUSTED INFERENCE FOR A NONPARAMETRIC BAYESIAN RANDOM EFFECT DISTRIBUTION. , 2011, Statistica Sinica.

[11]  N. Breslow,et al.  Bias Correction in Generalized Linear Mixed Models with Multiple Components of Dispersion , 1996 .

[12]  D. Dunson,et al.  Bayesian Multivariate Logistic Regression , 2004, Biometrics.

[13]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[14]  Glen Takahara,et al.  Independent and Identically Distributed Monte Carlo Algorithms for Semiparametric Linear Mixed Models , 2002 .

[15]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[16]  D. Dunson,et al.  Bayesian Semiparametric Structural Equation Models with Latent Variables , 2010 .

[17]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[18]  M. West On scale mixtures of normal distributions , 1987 .

[19]  Satkartar K. Kinney,et al.  Fixed and Random Effects Selection in Linear and Logistic Models , 2007, Biometrics.

[20]  R. Schall Estimation in generalized linear models with random effects , 1991 .

[21]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[22]  D. Dunson,et al.  Nonparametric Bayes Conditional Distribution Modeling With Variable Selection , 2009, Journal of the American Statistical Association.

[23]  S. Chib,et al.  Bayesian Tests and Model Diagnostics in Conditionally Independent Hierarchical Models , 1997 .

[24]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[25]  A. Zellner,et al.  Posterior odds ratios for selected regression hypotheses , 1980 .

[26]  G. Roberts,et al.  Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.

[27]  David B. Dunson,et al.  Semiparametric Bayes hierarchical models with mean and variance constraints , 2010, Comput. Stat. Data Anal..

[28]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[29]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[30]  Marie Davidian,et al.  A Monte Carlo EM algorithm for generalized linear mixed models with flexible random effects distribution. , 2002, Biostatistics.

[31]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[32]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[33]  J G Ibrahim,et al.  A semiparametric Bayesian approach to the random effects model. , 1998, Biometrics.

[34]  D. Freedman On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case , 1963 .

[35]  Peter McCullagh,et al.  REML Estimation with Exact Covariance in the Logistic Mixed Model , 1993 .

[36]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[37]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[38]  S. Fienberg When did Bayesian inference become "Bayesian"? , 2006 .

[39]  Mingan Yang,et al.  Bayesian nonparametric centered random effects models with variable selection , 2013, Biometrical journal. Biometrische Zeitschrift.

[40]  J. Ibrahim,et al.  Fixed and Random Effects Selection in Mixed Effects Models , 2011, Biometrics.

[41]  E. Lesaffre,et al.  Smooth Random Effects Distribution in a Linear Mixed Model , 2004, Biometrics.

[42]  N. Breslow,et al.  Bias correction in generalised linear mixed models with a single component of dispersion , 1995 .

[43]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[44]  D. Rubin,et al.  Parameter expansion to accelerate EM: The PX-EM algorithm , 1998 .

[45]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[46]  Wim Van Den Noortgate,et al.  Assessing and Explaining Differential Item Functioning Using Logistic Mixed Models , 2005 .

[47]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[48]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[49]  H. Bondell,et al.  Joint Variable Selection for Fixed and Random Effects in Linear Mixed‐Effects Models , 2010, Biometrics.

[50]  Hani Doss,et al.  Monte Carlo Methods for Bayesian Analysis of Survival Data Using Mixtures of Dirichlet Process Priors , 2003 .

[51]  O. Papaspiliopoulos A note on posterior sampling from Dirichlet mixture models , 2008 .

[52]  Debdeep Pati,et al.  Bayesian nonparametric regression with varying residual density , 2014, Annals of the Institute of Statistical Mathematics.