Domain evolution and functional diversification of sulfite reductases.

Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

[1]  K. Suzuki,et al.  Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. , 2003, International journal of systematic and evolutionary microbiology.

[2]  D. Stahl,et al.  Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin , 2003, Applied and Environmental Microbiology.

[3]  S. Hanada,et al.  A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring , 2003, Extremophiles.

[4]  M. Wagner,et al.  Origins and diversification of sulfate-respiring microorganisms , 2002, Antonie van Leeuwenhoek.

[5]  M. Hattori,et al.  Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Friedrich Phylogenetic Analysis Reveals Multiple Lateral Transfers of Adenosine-5′-Phosphosulfate Reductase Genes among Sulfate-Reducing Microorganisms , 2002, Journal of bacteriology.

[7]  Linda L. Blackall,et al.  Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes , 2001, Journal of bacteriology.

[8]  Mark A. Ragan,et al.  The complete genome of the crenarchaeon Sulfolobus solfataricus P2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  T. Bobik,et al.  The Alternative Electron Acceptor Tetrathionate Supports B12-Dependent Anaerobic Growth ofSalmonella enterica Serovar Typhimurium on Ethanolamine or 1,2-Propanediol , 2001, Journal of bacteriology.

[10]  Michael Friedrich,et al.  Dissimilatory Sulfite Reductase (Desulfoviridin) of the Taurine-Degrading, Non-Sulfate-Reducing Bacterium Bilophila wadsworthia RZATAU Contains a Fused DsrB-DsrD Subunit , 2001, Journal of bacteriology.

[11]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[12]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[13]  S. Neumann,et al.  Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway* , 2000, Molecular Biology Reports.

[14]  D. Canfield,et al.  The evolution of the sulfur cycle , 1999 .

[15]  K. Suzuki,et al.  Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. , 1999, International journal of systematic bacteriology.

[16]  J. Imhoff,et al.  Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. , 1998, International journal of systematic bacteriology.

[17]  K. Suzuki,et al.  Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. , 1998, International journal of systematic bacteriology.

[18]  C. Dahl,et al.  Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. , 1998, Microbiology.

[19]  Michael Wagner,et al.  Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration , 1998, Journal of bacteriology.

[20]  R. Huber,et al.  A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. , 1998, Microbiology.

[21]  C. Dahl,et al.  Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. , 1997, Microbiology.

[22]  H. Laue,et al.  Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU , 1997, Applied and environmental microbiology.

[23]  E. Getzoff,et al.  The relationship between structure and function for the sulfite reductases. , 1996, Current opinion in structural biology.

[24]  E. Getzoff,et al.  Sulfite Reductase Structure at 1.6 Å: Evolution and Catalysis for Reduction of Inorganic Anions , 1995, Science.

[25]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[26]  G. Gisselmann,et al.  The ferredoxin:sulphite reductase gene from Synechococcus PCC7942. , 1993, Biochimica et biophysica acta.

[27]  C. Dahl,et al.  Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. , 1993, Journal of general microbiology.

[28]  E. L. Barrett,et al.  Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite , 1991, Journal of bacteriology.

[29]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[30]  D. Rueger,et al.  Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. , 1989, The Journal of biological chemistry.

[31]  D. Rueger,et al.  Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. DNA sequences of cysI and cysH and a model for the siroheme-Fe4S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach nitrite reductase. , 1989, The Journal of biological chemistry.

[32]  E. L. Barrett,et al.  The phs gene and hydrogen sulfide production by Salmonella typhimurium , 1987, Journal of bacteriology.

[33]  A. Lino,et al.  Low-spin sulfite reductases: a new homologous group of non-heme iron-siroheme proteins in anaerobic bacteria. , 1986, Biochemical and biophysical research communications.

[34]  M. G. Tyler,et al.  Sulfur isotope fractionation during SO3(2-) reduction by different clostridial species. , 1984, Canadian journal of microbiology.

[35]  G. Harrison,et al.  Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum , 1984, Archives of Microbiology.

[36]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[37]  H. G. Trüper,et al.  Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties. , 1979, Biochimica et biophysica acta.

[38]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[39]  M J Murphy,et al.  Siroheme and sirohydrochlorin. The basis for a new type of porphyrin-related prosthetic group common to both assimilatory and dissimilatory sulfite reductases. , 1973, The Journal of biological chemistry.

[40]  Winona C. Barker,et al.  New perspectives on bacterial ferredoxin evolution , 2005, Journal of Molecular Evolution.

[41]  T. Lien,et al.  Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences , 1999, Extremophiles.

[42]  T. Haverkamp,et al.  Structure and function of a cysBJIH gene cluster in the purple sulphur bacterium Thiocapsa roseopersicina. , 1999, Microbiology.

[43]  R F Doolittle,et al.  Convergent evolution: the need to be explicit. , 1994, Trends in biochemical sciences.

[44]  H. Koch,et al.  Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate‐reducer, Archaeoglobus fulgidus , 1990 .

[45]  A. Lino,et al.  Characterization of two dissimilatory sulfite reductases (desulforubidin and desulfoviridin) from the sulfate-reducing bacteria. Moessbauer and EPR studies , 1988 .

[46]  H. D. Peck,et al.  Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. , 1984, Annual review of microbiology.