LL-PCM: Low-Latency Phase Change Memory Architecture

PCM is a promising non-volatile memory technology, as it can offer a unique trade-off-between density and latency compared with DRAM and flash memory. Albeit PCM is much faster than flash memory, it is still notably slower than DRAM, which can significantly degrade system performance. In this paper, we analyze a PCM implementation in depth, and identify the primary cause of PCM’s long latency, i.e., a long interconnect (high resistance/capacitance) path between a cell and a sense-amp/write-driver. This in turn requires (1) a very large charge pump consuming: ~20% of PCM chip space, ~50% of latency of write operations, and ~2× more power than a write operation itself; and (2) a large current sense-amp with long time to pre-charge the interconnect path. Then, we propose Low-Latency PCM (LL-PCM) architecture. Our analysis shows that LL-PCM can give 119% higher performance and consume 43% lower memory energy than PCM for memory-intensive applications. LL-PCM is only ~1% larger than PCM, as the cost of reducing the resistance/capacitance of the interconnect path is negated by its 4.1× smaller charge pump. CCS CONCEPTS • B.3.1 Semiconductor Memories

[1]  Qi Wang,et al.  A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth , 2012, 2012 IEEE International Solid-State Circuits Conference.

[2]  Byung-Gil Choi,et al.  A 90 nm 1.8 V 512 Mb Diode-Switch PRAM With 266 MB/s Read Throughput , 2008, IEEE Journal of Solid-State Circuits.

[3]  Jun Yang,et al.  A low power and reliable charge pump design for Phase Change Memories , 2014, 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).

[4]  Kaustav Banerjee,et al.  3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration , 2001, Proc. IEEE.

[5]  Byung-Gil Choi,et al.  A 0.1-$\mu{\hbox {m}}$ 1.8-V 256-Mb Phase-Change Random Access Memory (PRAM) With 66-MHz Synchronous Burst-Read Operation , 2007, IEEE Journal of Solid-State Circuits.

[6]  Benjamin C. Lee,et al.  Disintegrated control for energy-efficient and heterogeneous memory systems , 2013, 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA).

[7]  Cong Xu,et al.  NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  Jongman Kim,et al.  An energy- and performance-aware DRAM cache architecture for hybrid DRAM/PCM main memory systems , 2011, 2011 IEEE 29th International Conference on Computer Design (ICCD).

[9]  Moinuddin K. Qureshi,et al.  Reducing read latency of phase change memory via early read and Turbo Read , 2015, 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA).

[10]  Gabriel H. Loh,et al.  Fundamental Latency Trade-off in Architecting DRAM Caches: Outperforming Impractical SRAM-Tags with a Simple and Practical Design , 2012, 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture.

[11]  Bastien Giraud,et al.  SRAM voltage and current sense amplifiers in sub-32nm double-gate CMOS insensitive to process variations and transistor mismatch , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[12]  Koichiro Ishibashi,et al.  A 7-ns 140-mW 1-Mb CMOS SRAM with current sense amplifier , 1992 .

[13]  Tajana Simunic,et al.  PDRAM: A hybrid PRAM and DRAM main memory system , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[14]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[15]  Young-Hyun Jun,et al.  1.2V 1.6Gb/s 56nm 6F2 4Gb DDR3 SDRAM with hybrid-I/O sense amplifier and segmented sub-array architecture , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[16]  D. Pappalardo,et al.  Charge Pump Circuits: An Overview on Design Strategies and Topologies , 2010, IEEE Circuits and Systems Magazine.

[17]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.