A Universal Reversible Turing Machine

A reversible Turing machines is a computing model with a "backward deterministic" property, which is closely related to physical reversibility. In this paper, we study the problem of finding a small universal reversible Turing machine (URTM). As a result, we obtained a 17-state 5-symbol URTM in the quintuple form that can simulate any cyclic tag system.

[1]  Kenichi Morita,et al.  Simple Universal One-Dimensional Reversible Cellular Automata , 2007, J. Cell. Autom..

[2]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[3]  K. Morita,et al.  Computation universality of one-dimensional reversible (injective) cellular automata , 1989 .

[4]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[5]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[6]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[7]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[8]  Kenichi Morita,et al.  A 1-Tape 2-Symbol Reversible Turing Machine , 1989 .

[9]  Tommaso Toffoli,et al.  Bicontinuous extensions of invertible combinatorial functions , 1981, Mathematical systems theory.

[10]  Manfred Kudlek,et al.  A Universal Turing Machine with 3 States and 9 Symbols , 2001, Developments in Language Theory.

[11]  Claudio Baiocchi,et al.  Three Small Universal Turing Machines , 2001, MCU.

[12]  Yurii Rogozhin,et al.  Small Universal Turing Machines , 1996, Theor. Comput. Sci..

[13]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[14]  Kenichi Morita,et al.  Simple Universal Reversible Cellular Automata in Which Reversible Logic Elements Can Be Embedded , 2004, IEICE Trans. Inf. Syst..

[15]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[16]  Kenichi Morita,et al.  A Simple Universal Logic Element and Cellular Automata for Reversible Computing , 2001, MCU.