Impedance-to-digital converter for sensor array microsystems

Many emerging micro/nano sensor interfaces suitable for microsystem integration produce a change of impedance that must be monitored over a broad frequency range. This paper introduces a mixed-signal integrated circuit that can extract and digitize the real and imaginary components of a sensor's impedance response. The ultra compact size of this circuit enables each element in a multi-channel sensor array microsystem to have its own individual readout channel, permitting simultaneous readout and digitization of a high density sensor array. The circuit was fabricated in 0.5µm CMOS and occupies only 0.045mm2 per cell. With a 3.3V supply, each cell consumes only 5.2µW at a typical 200kHZ sampling frequency. For a 3mm by 3mm die, this circuit can be instantiated well over 100 times, which is sufficient for the needs of many anticipated sensor array microsystems.

[1]  Chao Yang,et al.  Fully Integrated Seven-Order Frequency-Range Quadrature Sinusoid Signal Generator , 2009, IEEE Transactions on Instrumentation and Measurement.

[2]  Chao Yang,et al.  Fully Integrated Impedance Spectroscopy Systems for Biochemical Sensor Array , 2007, 2007 IEEE Biomedical Circuits and Systems Conference.

[3]  Chao Yang,et al.  Analysis of On-Chip Impedance Spectroscopy Methodologies for Sensor Arrays , 2006 .

[4]  Z. Wang A four-transistor four-quadrant analog multiplier using MOS transistors operating in the saturation region , 1993 .

[5]  Philip C. Treleaven,et al.  A special-purpose VLSI chip: A dynamic pipeline up-down counter , 1982 .

[6]  N. Pourmand,et al.  Label-Free Impedance Biosensors: Opportunities and Challenges. , 2007, Electroanalysis.

[7]  Yue Huang,et al.  Post-CMOS Compatible Microfabrication of a Multi-Analyte Bioelectrochemical Sensor Array Microsystem , 2006, 2006 5th IEEE Conference on Sensors.

[8]  Andreas Offenhäusser,et al.  Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. , 2005, Biophysical journal.

[9]  Mart Min,et al.  Lock-in measurement of bio-impedance variations , 2000 .

[10]  Mart Min,et al.  Improvement of Lock-in Electrical Bio-Impedance Analyzer for Implantable Medical Devices , 2007, IEEE Transactions on Instrumentation and Measurement.

[11]  K. Kimura,et al.  An MOS four-quadrant analog multiplier based on the multitail technique using a quadritail cell as a multiplier core , 1995 .

[12]  Kwang-Seok Yun,et al.  Analysis of heavy-metal-ions using mercury microelectrodes and a solid-state reference electrode fabricated on a Si wafer , 2000, Digest of Papers Microprocesses and Nanotechnology 2000. 2000 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.00EX387).

[13]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[14]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[15]  A. Khoei,et al.  Four-quadrant CMOS analog multiplier based on new current squarer circuit with high-speed , 2009, IEEE EUROCON 2009.

[16]  Membrane protein biosensor with multi-channel CMOS impedance extractor and digitizer , 2008, 2008 IEEE Sensors.

[17]  R. N. Schindler,et al.  A new impedance spectrometer for the investigation of electrochemical systems , 1992 .

[18]  Kari Halonen,et al.  CMOS dynamic comparators for pipeline A/D converters , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[19]  A. Mason,et al.  Biomimetic interfaces for a multifunctional biosensor array microsystem , 2004, Proceedings of IEEE Sensors, 2004..

[20]  Bruce Cornell,et al.  Tethered Lipid Bilayer Membranes: Formation and Ionic Reservoir Characterization , 1998 .

[21]  A. Pesavento,et al.  A wide linear range four quadrant multiplier in subthreshold CMOS , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[22]  B. Eversmann,et al.  A 128 × 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003 .

[23]  M. Trojanowicz,et al.  Miniaturized biochemical sensing devices based on planar bilayer lipid membranes , 2001, Fresenius' journal of analytical chemistry.

[24]  Bernabé Linares-Barranco,et al.  A General Translinear Principle for Subthreshold MOS Transistors , 1999 .

[25]  C. Ahn,et al.  On-Chip Electrochemical Analysis System Using Nanoelectrodes and Bioelectronic CMOS Chip , 2006, IEEE Sensors Journal.

[26]  Rodnay Zaks,et al.  A/D and D/A conversion , 1978, Microprocess..

[27]  K. Ogura,et al.  AC Impedance Spectroscopy of Humidity Sensor Using Poly(o-phenylenediamine)/Poly(vinyl alcohol) Composite Film , 2001 .

[28]  Gunter Hagen,et al.  Thick-film impedance based hydrocarbon detection based on chromium(III) oxide/ zeolite interfaces , 2006 .

[29]  Guido Torelli,et al.  CMOS triode-transistor transconductor for high-frequency continuous-time filters , 1994 .

[30]  Paul R. Gray,et al.  A 10 b, 20 Msample/s, 35 mW pipeline A/D converter , 1995, IEEE J. Solid State Circuits.

[31]  T. Lee,et al.  A Programmable 0.18-$\mu\hbox{m}$ CMOS Electrochemical Sensor Microarray for Biomolecular Detection , 2006, IEEE Sensors Journal.

[32]  G. Ramos,et al.  Analog computation of the fast Fourier transform , 1970 .

[33]  D. Maurissens,et al.  A CMOS pulse-width modulator/pulse-amplitude modulator for four-quadrant analog multipliers , 1992 .

[34]  R. Thewes,et al.  A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion , 2004, IEEE Journal of Solid-State Circuits.

[35]  Aleksei M. Zheltikov,et al.  Impedance Spectroscopy: Theory, Experiment, and Applications Second Edition. Evgenij Barsoukov and J. Ross Macdonald (eds). John Wiley & Sons, Inc., Hoboken, New Jersey, 2005, pp. 595 , 2007 .

[36]  M. L. Meade Lock-in amplifiers : principles and applications , 1983 .