Cuts, zonotopes and arrangements

Note: RO 2001.11.05, chapter 10 Reference ROSO-REPORT-2001-001 Record created on 2006-02-13, modified on 2016-08-08

[1]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[2]  R. Buck Partition of Space , 1943 .

[3]  David J. Rader,et al.  Maximizing the Product of Two Linear Functions In 0-1 Variables , 2002 .

[4]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[5]  G. Rinaldi,et al.  Exact ground states of two-dimensional ±J Ising spin glasses , 1996 .

[6]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[7]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[8]  G. Ziegler Lectures on Polytopes , 1994 .

[9]  Peter L. Hammer,et al.  From Linear Separability to Unimodality: A Hierarchy of Pseudo-Boolean Functions , 1988, SIAM J. Discret. Math..

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  P. L. Ivanescu Some Network Flow Problems Solved with Pseudo-Boolean Programming , 1965 .

[12]  Erich Steiner,et al.  A polynomial case of unconstrained zero-one quadratic optimization , 2001, Math. Program..

[13]  Paul Bratley,et al.  A guide to simulation , 1983 .

[14]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[15]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[16]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[17]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[18]  Francisco Barahona,et al.  A solvable case of quadratic 0-1 programming , 1986, Discret. Appl. Math..