Recursive Estimation of Motion, Structure, and Focal Length

Presents a formulation for recursive recovery of motion, pointwise structure, and focal length from feature correspondences tracked through an image sequence. In addition to adding focal length to the state vector, several representational improvements are made over earlier structure from motion formulations, yielding a stable and accurate estimation framework which applies uniformly to both true perspective and orthographic projection. Results on synthetic and real imagery illustrate the performance of the estimator. >

[1]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[2]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[3]  Robert Grover Brown,et al.  Introduction to random signal analysis and Kalman filtering , 1983 .

[4]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Olivier D. Faugeras,et al.  Building visual maps by combining noisy stereo measurements , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Ramesh C. Jain,et al.  A nonlinear optimization algorithm for the estimation of structure and motion parameters , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[8]  Olivier D. Faugeras,et al.  Maintaining representations of the environment of a mobile robot , 1988, IEEE Trans. Robotics Autom..

[9]  Edward M. Riseman,et al.  A data set for quantitative motion analysis , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  R. Chellappa,et al.  Recursive 3-D motion estimation from a monocular image sequence , 1990 .

[11]  Rama Chellappa,et al.  3-D Motion Estimation Using a Sequence of Noisy Stereo Images: Models, Estimation, and Uniqueness Results , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Joachim Heel,et al.  Temporally integrated surface reconstruction , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[13]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[14]  J. Oliensis,et al.  Incorporating motion error in multi-frame structure from motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[15]  Olivier D. Faugeras,et al.  What can be seen in three dimensions with an uncalibrated stereo rig , 1992, ECCV.

[16]  Allen R. Hanson,et al.  3D model acquisition from monocular image sequences , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  S. B. Kang,et al.  Recovering 3 D Shape and Motion from Image Streams using Non-Linear Least Squares , 1993 .

[18]  Narendra Ahuja,et al.  Optimal Motion and Structure Estimation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Alex Pentland,et al.  Recursive estimation of structure and motion using relative orientation constraints , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Daphna Weinshall,et al.  Linear and incremental acquisition of invariant shape models from image sequences , 1993, 1993 (4th) International Conference on Computer Vision.

[21]  Amnon Shashua,et al.  Projective depth: A geometric invariant for 3D reconstruction from two perspective/orthographic views and for visual recognition , 1993, 1993 (4th) International Conference on Computer Vision.

[22]  Alex Pentland,et al.  Visually Controlled Graphics , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Pietro Perona,et al.  Recursive motion and structure estimation with complete error characterization , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Richard Szeliski,et al.  Recovering 3D Shape and Motion from Image Streams Using Nonlinear Least Squares , 1994, J. Vis. Commun. Image Represent..

[25]  Alex Pentland,et al.  Recursive estimation for CAD model recovery , 1994, Proceedings of 1994 IEEE 2nd CAD-Based Vision Workshop.

[26]  Takeo Kanade,et al.  A Paraperspective Factorization Method for Shape and Motion Recovery , 1994, IEEE Trans. Pattern Anal. Mach. Intell..