QMR Smoothing for Lanczos-Type Product Methods Based on Three-Term Rrecurrences

For the solution of large, sparse, non-Hermitian linear systems, Lanczos-type product methods that are based on the Lanczos three-term recurrence are derived in a systematic way. These methods either square the Lanczos process or combine it with a local minimization of the residual. For them a quasi-minimal residual (QMR) smoothing is proposed that can also be implemented by short-term recurrences. The practical performance of these methods and the QMR smoothing is demonstrated in a number of numerical examples.

[1]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[2]  R. Freund,et al.  Transpose-Free Quasi-Minimal Residual Methods for Non-Hermitian Linear Systems , 1994 .

[3]  Zhi-Hao Cao On the QMR approach for iterative methods including coupled three-term recurrences for solving nonsymmetric linear systems , 1998 .

[4]  Charles H. Tong A Family of Quasi-Minimal Residual Methods for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..

[5]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[6]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[7]  K. J. Ressel Hybrid Lanczos-type product methods , 1996 .

[8]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[9]  Martin H. Gutknecht,et al.  Look-Ahead Procedures for Lanczos-Type Product Methods Based on Three-Term Lanczos Recurrences , 2000, SIAM J. Matrix Anal. Appl..

[10]  Tony F. Chan,et al.  A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems , 1994, SIAM J. Sci. Comput..

[11]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[12]  Willi Schönauer,et al.  Scientific computing on vector computers , 1987, Special topics in supercomputing.

[13]  T. Manteuffel,et al.  Variable metric conjugate gradient methods , 1994 .

[14]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[15]  Rüdiger Weiss,et al.  Properties of generalized conjugate gradient methods , 1994, Numer. Linear Algebra Appl..

[16]  Jane K. Collum Peaks, plateaus, numerical instabilities in a Galerkin minimal residual pair of methods for solving Ax = b , 1995 .

[17]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[18]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[19]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[20]  Martin H. Gutknecht,et al.  Changing the norm in conjugate gradient type algorithms , 1993 .

[21]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[22]  H. V. D. Vorst,et al.  Generalized conjugate gradient squared , 1996 .

[23]  Homer F. Walker,et al.  Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..

[24]  Anne Greenbaum,et al.  Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..

[25]  Rüdiger Weiss,et al.  Convergence behavior of generalized conjugate gradient methods , 1990 .

[26]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[27]  C. Brezinski,et al.  Look-ahead in Bi-CGSTAB and other product methods for linear systems , 1995 .

[28]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[29]  Shao-Liang Zhang,et al.  GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..

[30]  慶應義塾大学 Advances in numerical methods for large sparse sets of linear equations , 1986 .

[31]  M. Gutknecht A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..

[32]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[33]  T. Manteuffel Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .