QMR Smoothing for Lanczos-Type Product Methods Based on Three-Term Rrecurrences
暂无分享,去创建一个
[1] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[2] R. Freund,et al. Transpose-Free Quasi-Minimal Residual Methods for Non-Hermitian Linear Systems , 1994 .
[3] Zhi-Hao Cao. On the QMR approach for iterative methods including coupled three-term recurrences for solving nonsymmetric linear systems , 1998 .
[4] Charles H. Tong. A Family of Quasi-Minimal Residual Methods for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..
[5] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[6] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[7] K. J. Ressel. Hybrid Lanczos-type product methods , 1996 .
[8] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[9] Martin H. Gutknecht,et al. Look-Ahead Procedures for Lanczos-Type Product Methods Based on Three-Term Lanczos Recurrences , 2000, SIAM J. Matrix Anal. Appl..
[10] Tony F. Chan,et al. A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems , 1994, SIAM J. Sci. Comput..
[11] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[12] Willi Schönauer,et al. Scientific computing on vector computers , 1987, Special topics in supercomputing.
[13] T. Manteuffel,et al. Variable metric conjugate gradient methods , 1994 .
[14] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[15] Rüdiger Weiss,et al. Properties of generalized conjugate gradient methods , 1994, Numer. Linear Algebra Appl..
[16] Jane K. Collum. Peaks, plateaus, numerical instabilities in a Galerkin minimal residual pair of methods for solving Ax = b , 1995 .
[17] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[18] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[19] T. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems , 1977 .
[20] Martin H. Gutknecht,et al. Changing the norm in conjugate gradient type algorithms , 1993 .
[21] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[22] H. V. D. Vorst,et al. Generalized conjugate gradient squared , 1996 .
[23] Homer F. Walker,et al. Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..
[24] Anne Greenbaum,et al. Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..
[25] Rüdiger Weiss,et al. Convergence behavior of generalized conjugate gradient methods , 1990 .
[26] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[27] C. Brezinski,et al. Look-ahead in Bi-CGSTAB and other product methods for linear systems , 1995 .
[28] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[29] Shao-Liang Zhang,et al. GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..
[30] 慶應義塾大学. Advances in numerical methods for large sparse sets of linear equations , 1986 .
[31] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..
[32] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[33] T. Manteuffel. Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .