Dynamical constraints on the origin of multiple stellar populations in globular clusters

We have carried out a large grid of N-body simulations in order to investigate if mass loss as a result of primordial gas expulsion can be responsible for the large fraction of second-generation (SG) stars in globular clusters (GCs) with multiple stellar populations (MSPs). Our clusters start with two stellar populations in which 10 per cent of all stars are SG stars. We simulate clusters with different initial masses, different ratios of the half-mass radius of first to SG stars, different primordial gas fractions and Galactic tidal fields with varying strength. We then let our clusters undergo primordial gas loss and obtain their final properties such as mass, half-mass radius and the fraction of SG stars. Using our N-body grid we then perform a Monte Carlo analysis to constrain the initial masses, radii and required gas expulsion time-scales of GCs with MSPs. Our results can explain the present-day properties of GCs only if (1) a substantial amount of gas was present in the clusters after the formation of SG stars and (2) gas expulsion time-scales were extremely short (≲ 105 yr). Such short gas expulsion time-scales are in agreement with recent predictions that dark remnants have ejected the primordial gas from GCs, and pose a potential problem for the asymptotic giant branch scenario. In addition, our results predict a strong anti-correlation between the number ratio of SG stars in GCs and the present-day mass of GCs. So far, the observational data show only a significantly weaker anti-correlation, if any at all.

[1]  N. Bastian,et al.  A general abundance problem for all self-enrichment scenarios for the origin of multiple populations in globular clusters , 2015, 1503.03071.

[2]  F. Grundahl,et al.  RADIAL DISTRIBUTIONS OF SUB-POPULATIONS IN THE GLOBULAR CLUSTER M15: A MORE CENTRALLY CONCENTRATED PRIMORDIAL POPULATION , 2015, 1503.00726.

[3]  U. Wisconsin-Madison,et al.  Studying the YMC population of M83: how long clusters remain embedded, their interaction with the ISM and implications for GC formation theories , 2015, 1502.03823.

[4]  Surrey,et al.  Biases in the inferred mass-to-light ratio of globular clusters: no need for variations in the stellar mass function , 2015, 1501.04971.

[5]  N. Bastian,et al.  Constraining globular cluster formation through studies of young massive clusters – IV. Testing the fast rotating massive star scenario , 2014, 1408.6650.

[6]  P. Bonifacio,et al.  Galactic globular cluster 47 Tucanae: new ties between the chemical and dynamical evolution of globular clusters? , 2014, 1407.7769.

[7]  E. Dalessandro,et al.  FIRST EVIDENCE OF FULLY SPATIALLY MIXED FIRST AND SECOND GENERATIONS IN GLOBULAR CLUSTERS: THE CASE OF NGC 6362 , 2014, 1407.0484.

[8]  Astronomy,et al.  Chemical composition and constraints on mass loss for globular clusters in dwarf galaxies: WLM and IKN , 2014, 1404.1916.

[9]  S. Longmore,et al.  UvA-DARE ( Digital Academic Repository ) Early disc accretion as the origin of abundance anomalies in globular clusters , 2013 .

[10]  N. Drost,et al.  The Astrophysical Multipurpose Software Environment , 2013, 1307.3016.

[11]  P. Ventura,et al.  The puzzle of metallicity and multiple stellar populations in the globular clusters in Fornax , 2013, 1306.3351.

[12]  A. Dotter,et al.  A DYNAMICAL SIGNATURE OF MULTIPLE STELLAR POPULATIONS IN 47 TUCANAE , 2013, 1306.1226.

[13]  G. Meynet,et al.  Superbubble dynamics in globular cluster infancy II. Consequences for secondary star formation in the context of self-enrichment via fast rotating massive stars , 2013, 1302.2494.

[14]  S. McMillan,et al.  Dynamical evolution and spatial mixing of multiple population globular clusters , 2012, 1212.2651.

[15]  S. Lucatello,et al.  The Na-O anticorrelation in horizontal branch stars - III. 47 Tucanae and M 5 , 2012, 1210.4069.

[16]  G. Meynet,et al.  Superbubble dynamics in globular cluster infancy. I. How do globular clusters first lose their cold gas , 2012, 1209.4518.

[17]  Usa,et al.  Constraints on mass loss and self-enrichment scenarios for the globular clusters of the Fornax dSph , 2012, 1207.5792.

[18]  S. Cassisi,et al.  THE INFRARED EYE OF THE WIDE-FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE REVEALS MULTIPLE MAIN SEQUENCES OF VERY LOW MASS STARS IN NGC 2808 , 2012, 1206.5529.

[19]  G. Piotto,et al.  The double sub-giant branch of NGC 6656 (M 22): A chemical characterization , 2012, 1202.2825.

[20]  F. Inti Pelupessy,et al.  Multi-physics simulations using a hierarchical interchangeable software interface , 2011, Comput. Phys. Commun..

[21]  J. Anderson,et al.  A DOUBLE MAIN SEQUENCE IN THE GLOBULAR CLUSTER NGC 6397 , 2011, 1110.1077.

[22]  J. Anderson,et al.  MULTIPLE STELLAR POPULATIONS IN 47 Tucanae , 2011, 1109.0900.

[23]  M. Catelán,et al.  Formation of multiple populations in globular clusters: another possible scenario , 2011, 1106.6082.

[24]  J. Strader,et al.  STAR CLUSTERS IN M31. V. INTERNAL DYNAMICAL TRENDS: SOME TROUBLESOME, SOME REASSURING , 2011, 1104.4649.

[25]  M. Pinsonneault,et al.  THE GRADIENTS IN THE 47 Tuc RED GIANT BRANCH BUMP AND HORIZONTAL BRANCH ARE CONSISTENT WITH A CENTRALLY CONCENTRATED, HELIUM-ENRICHED SECOND STELLAR GENERATION , 2011, 1102.3916.

[26]  P. Ventura,et al.  Hot bottom burning in the envelope of super asymptotic giant branch stars , 2011 .

[27]  E. Dalessandro,et al.  Mining SDSS in search of multiple populations in globular clusters , 2010, 1010.4697.

[28]  Edinburgh,et al.  On the mass—radius relation of hot stellar systems , 2010, 1007.2333.

[29]  D. Spergel,et al.  ON THE FORMATION OF MULTIPLE STELLAR POPULATIONS IN GLOBULAR CLUSTERS , 2010, 1005.4934.

[30]  S. McMillan,et al.  Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta , 2010, 1005.1892.

[31]  P. Kroupa,et al.  Evolution of two stellar populations in globular clusters - II. Effects of primordial gas expulsion , 2010, 1003.5921.

[32]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[33]  S. D. Mink,et al.  Massive binaries as the source of abundance anomalies in globular clusters , 2009, 0910.1086.

[34]  J. Anderson,et al.  Radial distribution of the multiple stellar populations in ω Centauri , 2009, 0909.4785.

[35]  S. Lucatello,et al.  Na-O Anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra , 2009, 0909.2938.

[36]  P. Kroupa,et al.  A top-heavy stellar initial mass function in starbursts as an explanation for the high mass-to-light ratios of ultra-compact dwarf galaxies , 2009, 0901.0915.

[37]  P. Kroupa,et al.  The evolution of two stellar populations in globular clusters I. The dynamical mixing timescale , 2008, 0810.5345.

[38]  S. McMillan,et al.  Formation and dynamical evolution of multiple stellar generations in globular clusters , 2008, 0809.1438.

[39]  A. Renzini Origin of multiple stellar populations in globular clusters and their helium enrichment , 2008, 0808.4095.

[40]  F. D’Antona,et al.  The fraction of second generation stars in globular clusters from the analysis of the horizontal branch , 2008, 0807.4233.

[41]  P. Kroupa,et al.  The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo , 2007, 0712.1591.

[42]  G. Meynet,et al.  Origin of the abundance patterns in Galactic globular clusters: constraints on dynamical and chemical properties of globular clusters , 2007, 0709.4160.

[43]  G. Piotto,et al.  The ACS Survey of Galactic Globular Clusters. III. The Double Subgiant Branch of NGC 1851 , 2007, 0709.3762.

[44]  P. Kroupa,et al.  A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolution , 2007, 0707.1944.

[45]  J. Anderson,et al.  A Triple Main Sequence in the Globular Cluster NGC 2808 , 2007, astro-ph/0703767.

[46]  Cambridge,et al.  The Origin Of The Gaussian Initial Mass Function of Old Globular Cluster Systems: Impact Of The Residual Star Forming Gas Removal , 2007, astro-ph/0702258.

[47]  G. Meynet,et al.  Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters , 2006, astro-ph/0611379.

[48]  P. Kroupa,et al.  A highly abnormal massive star mass function in the Orion Nebula cluster and the dynamical decay of trapezium systems , 2006, astro-ph/0610230.

[49]  J. Prieto,et al.  Dynamical Evolution of Globular Clusters in Hierarchical Cosmology , 2006, Proceedings of the International Astronomical Union.

[50]  S. Zwart,et al.  Star cluster disruption by giant molecular clouds , 2006, astro-ph/0606451.

[51]  N. Prantzos,et al.  On the self-enrichment scenario of galactic globular clusters: constraints on the IMF , 2006, astro-ph/0606112.

[52]  Oleg Y. Gnedin,et al.  A Large Dark Matter Core in the Fornax Dwarf Spheroidal Galaxy? , 2006, astro-ph/0603775.

[53]  G. Meynet,et al.  On the origin of the high helium sequence in ω Centauri , 2006, astro-ph/0601425.

[54]  R. P. van der Marel,et al.  Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters , 2005, astro-ph/0605132.

[55]  Matthias Steinmetz,et al.  Accretion relics in the solar neighbourhood : Debris from ωCen's parent galaxy , 2004, astro-ph/0408567.

[56]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[57]  F. D’Antona,et al.  The Early Evolution of Globular Clusters: The Case of NGC 2808 , 2004, astro-ph/0405016.

[58]  S. Cassisi,et al.  ω Centauri: The Population Puzzle Goes Deeper , 2004, astro-ph/0403112.

[59]  A. Walker,et al.  CCD Photometry of the Globular Cluster ω Centauri. II. Stellar Populations and Age-Metallicity Relation , 2003, astro-ph/0310773.

[60]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[61]  J. Makino,et al.  Dynamical evolution of star clusters in tidal fields , 2002, astro-ph/0211471.

[62]  E. Pancino The Multiple Stellar Populations in Omega Centauri , 2001, astro-ph/0112015.

[63]  Paolo Ventura,et al.  Predictions for Self-Pollution in Globular Cluster Stars , 2001 .

[64]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[65]  D. Alves,et al.  The Rotation Curve of the Large Magellanic Cloud and the Implications for Microlensing , 2000, astro-ph/0006018.

[66]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[67]  S. M. Fall,et al.  The Luminosity Function of Young Star Clusters in “the Antennae” Galaxies (NGC 4038/4039) , 1999, astro-ph/9907430.

[68]  D. Heggie,et al.  Statistics of N-body simulations — IV. Unequal masses with a tidal field , 1997 .

[69]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[70]  B. Whitmore,et al.  Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies , 1995 .

[71]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[72]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[73]  Piet Hut,et al.  Core radius and density measurements in N-body experiments Connections with theoretical and observational definitions , 1985 .

[74]  D. Sharp An overview of Rayleigh-Taylor instability☆ , 1984 .

[75]  J. Hills The effect of mass loss on the dynamical evolution of a stellar system - Analytic approximations , 1980 .

[76]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[77]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .

[78]  D. Lin,et al.  Evolution of Planetesimals. II. Numerical Simulations , 1993 .

[79]  R. Wielen Dynamics of Open Star Clusters , 1985 .