The space-time fractional diffusion equation with Caputo derivatives

We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order β∈(0, 2] and the first-order time derivative with Caputo derivative of order α∈(0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.

[1]  N. Leonenko,et al.  Non-Gaussian scenarios for the heat equation with singular initial conditions , 1999 .

[2]  W. Wyss The fractional diffusion equation , 1986 .

[3]  Socio Michele Caputo The Green function of the diffusion of fluids in porous media with memory , 1996 .

[4]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[5]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[6]  N. Leonenko,et al.  Spectral Analysis of Fractional Kinetic Equations with Random Data , 2001 .

[7]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[8]  D. Benson,et al.  Eulerian derivation of the fractional advection-dispersion equation. , 2001, Journal of contaminant hydrology.

[9]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[10]  Vo Anh,et al.  Scaling laws for fractional diffusion-wave equations with singular data , 2000 .

[11]  I. Podlubny Fractional differential equations , 1998 .

[12]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[13]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.

[14]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[15]  I. Turner,et al.  Time fractional advection-dispersion equation , 2003 .

[16]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[17]  J. Trujillo,et al.  On the solution of fractional evolution equations , 2004 .

[18]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[19]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[20]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[21]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[22]  A. El-Sayed,et al.  Continuation theorem of fractional order evolutionary integral equations , 2002 .

[23]  Rudolf Hilfer,et al.  EXACT SOLUTIONS FOR A CLASS OF FRACTAL TIME RANDOM WALKS , 1995 .

[24]  Francesco Mainardi,et al.  Approximation of Levy-Feller Diffusion by Random Walk , 1999 .

[25]  Vo Anh,et al.  Renormalization and homogenization of fractional diffusion equations with random data , 2002 .

[26]  M. Basu,et al.  On quadratic fractional generalized solid bi-criterion transportation problem , 2002 .

[27]  Yasuhiro Fujita,et al.  INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION I(Martingales and Related Topics) , 1989 .