Generalized Poisson integer-valued autoregressive processes with structural changes
暂无分享,去创建一个
Dehui Wang | Chenhui Zhang | Xiaohong Wang | Kai Yang | Han Li | Kai Yang | Dehui Wang | Han Li | Xiaohong Wang | Chenhui Zhang
[1] An Approximation Model of the Collective Risk Model with INAR(1) Claim Process , 2014 .
[2] Kai Yang,et al. An integer-valued threshold autoregressive process based on negative binomial thinning , 2018 .
[3] Dehui Wang,et al. A seasonal geometric INAR process based on negative binomial thinning operator , 2018, Statistical Papers.
[4] Maria Eduarda Silva,et al. Self-exciting threshold binomial autoregressive processes , 2015, AStA Advances in Statistical Analysis.
[5] A. Vexler. Martingale Type Statistics Applied to Change Points Detection , 2008 .
[6] Anthony C. Davison,et al. Likelihood Estimation for the INAR(p) Model by Saddlepoint Approximation , 2015 .
[7] Wai Keung Li,et al. Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.
[8] S. Meintanis,et al. Tests for Structural Changes in Time Series of Counts , 2017 .
[9] T. V. Ramanathan,et al. Integer autoregressive models with structural breaks , 2013 .
[10] F. Famoye,et al. Generalized poisson regression model , 1992 .
[11] Ed. McKenzie,et al. SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .
[12] S. Schweer. A Goodness‐of‐Fit Test for Integer‐Valued Autoregressive Processes , 2016 .
[13] Christian H. Weiß,et al. The INARCH(1) Model for Overdispersed Time Series of Counts , 2010 .
[14] P. Consul,et al. A Generalization of the Poisson Distribution , 1973 .
[15] R. Keith Freeland,et al. True integer value time series , 2010 .
[16] Kai Yang,et al. Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes , 2019, Metrika.
[17] Dehui Wang,et al. Threshold autoregression analysis for finite-range time series of counts with an application on measles data , 2018 .
[18] M. Bourguignon,et al. Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion , 2017, 1711.10940.
[19] Christian H. Weiß,et al. Thinning-based models in the analysis of integer-valued time series: a review , 2015 .
[20] Cathy W. S. Chen,et al. Generalized Poisson autoregressive models for time series of counts , 2016, Comput. Stat. Data Anal..
[21] Mohamed Alosh,et al. FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .
[22] Christian H. Weiß,et al. Thinning operations for modeling time series of counts—a survey , 2008 .
[23] Han Li,et al. Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes , 2017, Comput. Stat..
[24] Joseph Tadjuidje Kamgaing,et al. Changepoints in times series of counts , 2012 .
[25] Magda Monteiro,et al. Integer-Valued Self-Exciting Threshold Autoregressive Processes , 2012 .
[26] Hassan S. Bakouch,et al. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .
[27] Albert Vexler,et al. Retrospective Change Point Detection: From Parametric to Distribution Free Policies , 2010, Commun. Stat. Simul. Comput..
[28] B. Whitcomb,et al. An extension of a change-point problem , 2009 .
[29] Fw Fred Steutel,et al. Discrete analogues of self-decomposability and stability , 1979 .
[30] Kai Yang,et al. First-order random coefficients integer-valued threshold autoregressive processes , 2018 .