Generalized Poisson integer-valued autoregressive processes with structural changes

In this paper, we introduce a new first-order generalized Poisson integer-valued autoregressive process, for modeling integer-valued time series exhibiting a piecewise structure and overdispersion....

[1]  An Approximation Model of the Collective Risk Model with INAR(1) Claim Process , 2014 .

[2]  Kai Yang,et al.  An integer-valued threshold autoregressive process based on negative binomial thinning , 2018 .

[3]  Dehui Wang,et al.  A seasonal geometric INAR process based on negative binomial thinning operator , 2018, Statistical Papers.

[4]  Maria Eduarda Silva,et al.  Self-exciting threshold binomial autoregressive processes , 2015, AStA Advances in Statistical Analysis.

[5]  A. Vexler Martingale Type Statistics Applied to Change Points Detection , 2008 .

[6]  Anthony C. Davison,et al.  Likelihood Estimation for the INAR(p) Model by Saddlepoint Approximation , 2015 .

[7]  Wai Keung Li,et al.  Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.

[8]  S. Meintanis,et al.  Tests for Structural Changes in Time Series of Counts , 2017 .

[9]  T. V. Ramanathan,et al.  Integer autoregressive models with structural breaks , 2013 .

[10]  F. Famoye,et al.  Generalized poisson regression model , 1992 .

[11]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[12]  S. Schweer A Goodness‐of‐Fit Test for Integer‐Valued Autoregressive Processes , 2016 .

[13]  Christian H. Weiß,et al.  The INARCH(1) Model for Overdispersed Time Series of Counts , 2010 .

[14]  P. Consul,et al.  A Generalization of the Poisson Distribution , 1973 .

[15]  R. Keith Freeland,et al.  True integer value time series , 2010 .

[16]  Kai Yang,et al.  Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes , 2019, Metrika.

[17]  Dehui Wang,et al.  Threshold autoregression analysis for finite-range time series of counts with an application on measles data , 2018 .

[18]  M. Bourguignon,et al.  Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion , 2017, 1711.10940.

[19]  Christian H. Weiß,et al.  Thinning-based models in the analysis of integer-valued time series: a review , 2015 .

[20]  Cathy W. S. Chen,et al.  Generalized Poisson autoregressive models for time series of counts , 2016, Comput. Stat. Data Anal..

[21]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[22]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[23]  Han Li,et al.  Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes , 2017, Comput. Stat..

[24]  Joseph Tadjuidje Kamgaing,et al.  Changepoints in times series of counts , 2012 .

[25]  Magda Monteiro,et al.  Integer-Valued Self-Exciting Threshold Autoregressive Processes , 2012 .

[26]  Hassan S. Bakouch,et al.  A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .

[27]  Albert Vexler,et al.  Retrospective Change Point Detection: From Parametric to Distribution Free Policies , 2010, Commun. Stat. Simul. Comput..

[28]  B. Whitcomb,et al.  An extension of a change-point problem , 2009 .

[29]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[30]  Kai Yang,et al.  First-order random coefficients integer-valued threshold autoregressive processes , 2018 .