Detecting Structural Progression in Glaucoma with Optical Coherence Tomography.

[1]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[2]  G. Wollstein,et al.  Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. , 2005, Archives of ophthalmology.

[3]  Chris A. Johnson,et al.  The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. , 2006, Ophthalmology.

[4]  Robert N Weinreb,et al.  Effect of Improper Scan Alignment on Retinal Nerve Fiber Layer Thickness Measurements Using Stratus Optical Coherence Tomograph , 2008, Journal of glaucoma.

[5]  C. Cheung,et al.  Effects of scan circle displacement in optical coherence tomography retinal nerve fibre layer thickness measurement: a RNFL modelling study , 2009, Eye.

[6]  Robert N. Weinreb,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. , 2010, Ophthalmology.

[7]  K. A. Townsend,et al.  Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head. , 2009, Ophthalmology.

[8]  F. Medeiros,et al.  Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. , 2009, Investigative ophthalmology & visual science.

[9]  Susan Vitale,et al.  Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. , 2009, American journal of ophthalmology.

[10]  F. Medeiros,et al.  Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. , 2009, American journal of ophthalmology.

[11]  W. Feuer,et al.  Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. , 2010, Investigative ophthalmology & visual science.

[12]  J. Funk,et al.  Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. , 2011, Investigative ophthalmology & visual science.

[13]  Cong Ye,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between the fast and the regular retinal nerve fiber layer scans. , 2011, Ophthalmology.

[14]  Douglas R. Anderson,et al.  Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. , 2011, Ophthalmology.

[15]  Robert N Weinreb,et al.  Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. , 2011, Investigative ophthalmology & visual science.

[16]  Robert N Weinreb,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. , 2011, Ophthalmology.

[17]  M. Nicolela,et al.  Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. , 2012, Ophthalmology.

[18]  Shu Liu,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. , 2012, Ophthalmology.

[19]  Richard A. Russell,et al.  Improved estimates of visual field progression using bayesian linear regression to integrate structural information in patients with ocular hypertension. , 2012, Investigative ophthalmology & visual science.

[20]  Robert N Weinreb,et al.  Estimating the rate of retinal ganglion cell loss in glaucoma. , 2012, American journal of ophthalmology.

[21]  Hye Jin Lee,et al.  Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[22]  F. Medeiros,et al.  A combined index of structure and function for staging glaucomatous damage. , 2012, Archives of ophthalmology.

[23]  Robert N Weinreb,et al.  The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. , 2012, Investigative ophthalmology & visual science.

[24]  Youngrok Lee,et al.  Glaucoma Diagnostic Capabilities of Optic Nerve Head Parameters as Determined by Cirrus HD Optical Coherence Tomography , 2012, Journal of glaucoma.

[25]  Signal-to-Noise Ratios for Structural and Functional Tests in Glaucoma. , 2013, Translational vision science & technology.

[26]  Jean-Claude Mwanza,et al.  Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss. , 2013, Investigative ophthalmology & visual science.

[27]  F. Horn,et al.  Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[28]  R. Weinreb,et al.  Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. , 2013, Ophthalmology.

[29]  M. Nicolela,et al.  Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. , 2013, Ophthalmology.

[30]  F. Medeiros,et al.  Predicting progression in glaucoma suspects with longitudinal estimates of retinal ganglion cell counts. , 2013, Investigative ophthalmology & visual science.

[31]  H. Kim,et al.  Detection of glaucomatous progression by spectral-domain optical coherence tomography. , 2013, Ophthalmology.

[32]  Donald C. Hood,et al.  Glaucomatous damage of the macula , 2013, Progress in Retinal and Eye Research.

[33]  Stuart K Gardiner,et al.  A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. , 2014, American journal of ophthalmology.

[34]  C. Owsley,et al.  Variation of the axial location of Bruch's membrane opening with age, choroidal thickness, and race. , 2014, Investigative ophthalmology & visual science.

[35]  Robert N Weinreb,et al.  Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. , 2013, Ophthalmology.

[36]  M. Nicolela,et al.  Rates of glaucomatous visual field change in a large clinical population. , 2014, Investigative ophthalmology & visual science.

[37]  Robert N Weinreb,et al.  Glaucomatous retinal nerve fiber layer thickness loss is associated with slower reaction times under a divided attention task. , 2014, American journal of ophthalmology.

[38]  W. Feuer,et al.  Frequency of abnormal retinal nerve fibre layer and ganglion cell layer SDOCT scans in healthy eyes and glaucoma suspects in a prospective longitudinal study , 2013, British Journal of Ophthalmology.

[39]  G. Holló,et al.  Detection of Early Glaucomatous Progression With Different Parameters of the RTVue Optical Coherence Tomograph , 2014, Journal of glaucoma.

[40]  S. Gardiner,et al.  Structural Measurements for Monitoring Change in Glaucoma: Comparing Retinal Nerve Fiber Layer Thickness With Minimum Rim Width and Area. , 2015, Investigative ophthalmology & visual science.

[41]  B. Yoo,et al.  Long-Term Reproducibility of Macular Ganglion Cell Analysis in Clinically Stable Glaucoma Patients. , 2015, Investigative ophthalmology & visual science.

[42]  E. Boer,et al.  Association between progressive retinal nerve fiber layer loss and longitudinal change in quality of life in glaucoma. , 2015, JAMA ophthalmology.

[43]  Jong Jin Jung,et al.  Rates and Patterns of Macular and Circumpapillary Retinal Nerve Fiber Layer Thinning in Preperimetric and Perimetric Glaucomatous Eyes , 2015, Journal of glaucoma.

[44]  Edem Tsikata,et al.  Patient characteristics associated with artifacts in Spectralis optical coherence tomography imaging of the retinal nerve fiber layer in glaucoma. , 2015, American journal of ophthalmology.

[45]  F. Medeiros,et al.  Structure versus Function in Glaucoma: The Debate That Doesn't Need to Be. , 2016, Ophthalmology.

[46]  Alberto Diniz-Filho,et al.  The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma , 2016, Investigative ophthalmology & visual science.

[47]  Eun Ji Lee,et al.  Glaucoma Diagnostic Ability of the New Circumpapillary Retinal Nerve Fiber Layer Thickness Analysis Based on Bruch's Membrane Opening. , 2016, Investigative ophthalmology & visual science.

[48]  Comparative efficacy of cyclosporine eye drop formulations in a mouse model of dry eye , 2016 .

[49]  Evaluation of Retinal Nerve Fiber Layer Thickness and Ganglion Cell Complex Progression Rates in Healthy, Ocular Hypertensive, and Glaucoma Eyes With the Avanti RTVue-XR Optical Coherence Tomograph Based on 5-Year Follow-up , 2016, Journal of glaucoma.

[50]  R. Weinreb,et al.  Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study. , 2016, Ophthalmology.

[51]  Werner Adler,et al.  Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma. , 2016, Investigative ophthalmology & visual science.

[52]  Brian A. Francis,et al.  Longitudinal and Cross-Sectional Analyses of Age Effects on Retinal Nerve Fiber Layer and Ganglion Cell Complex Thickness by Fourier-Domain OCT , 2016, Translational vision science & technology.

[53]  Christopher Bowd,et al.  Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA) , 2016, Investigative ophthalmology & visual science.

[54]  C. Leung,et al.  Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma. , 2017, Investigative ophthalmology & visual science.

[55]  C. Leung,et al.  Trend-Based Progression Analysis for Examination of the Topography of Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma , 2017, JAMA ophthalmology.

[56]  F. Medeiros,et al.  Comparing the Rates of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Loss in Healthy Eyes and in Glaucoma Eyes. , 2017, American journal of ophthalmology.

[57]  J. Crowston,et al.  Impact of Normal Aging and Progression Definitions on the Specificity of Detecting Retinal Nerve Fiber Layer Thinning. , 2017, American journal of ophthalmology.

[58]  F. Medeiros,et al.  Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma. , 2017, American journal of ophthalmology.