Understanding biofilm resistance to antibacterial agents

[1]  M. Sugai,et al.  Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents. , 1997, Chemotherapy.

[2]  G. Svensäter,et al.  Protein expression by planktonic and biofilm cells of Streptococcus mutans. , 2001, FEMS microbiology letters.

[3]  R. Hayward,et al.  Infection of cerebrospinal fluid shunts in infants: a study of etiological factors. , 1992, Journal of neurosurgery.

[4]  P. Stewart,et al.  Nonuniform spatial patterns of respiratory activity within biofilms during disinfection , 1995, Applied and environmental microbiology.

[5]  P. Stewart,et al.  Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms , 2002, Journal of Industrial Microbiology and Biotechnology.

[6]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[7]  D. Glandorf,et al.  Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. , 1998, Molecular plant-microbe interactions : MPMI.

[8]  Frederick M. Ausubel,et al.  Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation , 2002, Nature.

[9]  J. Ramos,et al.  Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds , 2000, Journal of bacteriology.

[10]  M. Dubow,et al.  Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion , 1999, Archives of Microbiology.

[11]  A. Brooun,et al.  A Dose-Response Study of Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2000 .

[12]  M. Dasgupta Biofilm causes decreased production of interferon-gamma. , 1996, Journal of the American Society of Nephrology : JASN.

[13]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[14]  H. Ceri,et al.  Biofilm bacteria: formation and comparative susceptibility to antibiotics. , 2002, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[15]  M. W. Reij,et al.  Development of a Standard Test To Assess the Resistance of Staphylococcus aureus Biofilm Cells to Disinfectants , 2002, Applied and Environmental Microbiology.

[16]  A. Kharazmi,et al.  Complement activation by Pseudomonas aeruginosa biofilms. , 1993, Microbial pathogenesis.

[17]  D. Martin,et al.  Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy , 1994, Journal of bacteriology.

[18]  K. Marshall,et al.  Physiological responses induced in bacteria adhering to surfaces , 1991 .

[19]  K. Lewis,et al.  Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials , 2001, Journal of bacteriology.

[20]  W. McCoy Fouling biofilm development in a tubular flow system , 1982 .

[21]  B. Volkers,et al.  A method for the study of de novo protein synthesis in pseudomonas aeruginosa after attachment , 1995 .

[22]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.

[23]  M Hubank,et al.  Identifying differences in mRNA expression by representational difference analysis of cDNA. , 1994, Nucleic acids research.

[24]  J. Still,et al.  Vancomycin-Resistant Organisms on a Burn Unit , 2001, Southern medical journal.

[25]  Zbigniew Lewandowski,et al.  Effects of biofilm structures on oxygen distribution and mass transport , 1994, Biotechnology and bioengineering.

[26]  Maureen E. Callow,et al.  The structure of Pseudomonas fluorescens biofilms in contact with flowing systems , 1991 .

[27]  L. Passerini,et al.  Biofilms on indwelling vascular catheters , 1992, Critical care medicine.

[28]  S. Roychoudhury,et al.  Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients , 1991, Clinical Microbiology Reviews.

[29]  M. Sugai,et al.  Effect of the Growth Rate of Pseudomonas aeruginosa Biofilms on the Susceptibility to Antimicrobial Agents: β-Lactams and Fluoroquinolones , 1999, Chemotherapy.

[30]  D. Davies,et al.  Growth and comparative physiology ofKlebsiella oxytoca attached to granular activated carbon particles and in liquid media , 2005, Microbial Ecology.

[31]  R. Bachofen,et al.  Effect of medium composition, flow rate, and signaling compounds on the formation of soluble extracellular materials by biofilms of Chromobacterium violaceum , 2002, Applied Microbiology and Biotechnology.

[32]  C. Prigent-Combaret,et al.  Abiotic Surface Sensing and Biofilm-Dependent Regulation of Gene Expression in Escherichia coli , 1999, Journal of bacteriology.

[33]  S. Molin,et al.  Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111 , 2002, Molecular microbiology.

[34]  A. Chakrabarty,et al.  Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa , 1993, Applied and environmental microbiology.

[35]  P. Stewart,et al.  Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin , 2000, Antimicrobial Agents and Chemotherapy.

[36]  H. Morisaki EFFECT OF SOLID-LIQUID INTERFACE ON METABOLIC ACTIVITY OF ESCHERICHIA COLI , 1983 .

[37]  Zbigniew Lewandowski,et al.  Hydrodynamics and kinetics in biofilm systems - recent advances and new problems , 1994 .

[38]  Frederick M. Ausubel,et al.  Identification of Virulence Genes in a Pathogenic Strain of Pseudomonas aeruginosa by Representational Difference Analysis , 2002, Journal of bacteriology.

[39]  J. Ramos,et al.  Cell envelope mutants of Pseudomonas putida: physiological characterization and analysis of their ability to survive in soil. , 1999, Environmental microbiology.

[40]  J. Costerton,et al.  Enhanced bacterial biofilm control using electromagnetic fields in combination with antibiotics. , 1999, Methods in enzymology.

[41]  J. Costerton,et al.  Optical sectioning of microbial biofilms , 1991, Journal of bacteriology.

[42]  M. Sugai,et al.  Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. , 1997, Chemotherapy.

[43]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.

[44]  P. Stewart,et al.  Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics , 1997, Antimicrobial agents and chemotherapy.

[45]  R. Kolter,et al.  Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili , 1998, Molecular microbiology.

[46]  T. Larsen Susceptibility of Porphyromonas gingivalis in biofilms to amoxicillin, doxycycline and metronidazole. , 2002, Oral microbiology and immunology.

[47]  C. Pérez-Giraldo,et al.  Phagocytosis and killing of slime-producing Staphylococcus epidermidis bypolymorphonuclear leukocytes. Effects of sparfloxacin. , 1998, Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia.

[48]  A. Matin,et al.  Tetracycline Rapidly Reaches All the Constituent Cells of Uropathogenic Escherichia coli Biofilms , 2002, Antimicrobial Agents and Chemotherapy.

[49]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[50]  G. McFeters,et al.  Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes. , 1994, Journal of microbiological methods.

[51]  G. Baziard-Mouysset,et al.  Interactions between Biocide Cationic Agents and Bacterial Biofilms , 2002, Antimicrobial Agents and Chemotherapy.

[52]  K. Lewis,et al.  Riddle of Biofilm Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[53]  K. Tanaka,et al.  A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS , 1996, Molecular microbiology.

[54]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[55]  M. Simon,et al.  Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus , 1986, Journal of bacteriology.

[56]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[57]  D. Allison,et al.  Biofilms in vitro and in vivo: do singular mechanisms imply cross‐resistance? , 2002, Symposium series.

[58]  J. Costerton,et al.  Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy , 1992, Antimicrobial Agents and Chemotherapy.

[59]  J. Paul,et al.  Activity of an Attached and Free-Living Vibrio sp. as Measured by Thymidine Incorporation, p-Iodonitrotetrazolium Reduction, and ATP/DNA Ratios , 1986, Applied and environmental microbiology.

[60]  D. Allison,et al.  Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. , 1998, FEMS microbiology letters.

[61]  P. Stewart,et al.  Mechanisms of antibiotic resistance in bacterial biofilms. , 2002, International journal of medical microbiology : IJMM.

[62]  N. Vats,et al.  Active detachment of Streptococcus mutans cells adhered to epon-hydroxylapatite surfaces coated with salivary proteins in vitro. , 2000, Archives of oral biology.

[63]  T. Maira-Litrán,et al.  The physiology and collective recalcitrance of microbial biofilm communities. , 2002, Advances in microbial physiology.

[64]  J. Theron,et al.  The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two‐dimensional gel electrophoresis , 2001, Proteomics.

[65]  R. Alaghehbandan,et al.  Pseudomonas infections in Tohid Burn Center, Iran. , 1998, Burns : journal of the International Society for Burn Injuries.

[66]  C. Olliff,et al.  The effects of extracellular slime from Staphylococcus epidermidis on phagocytic ingestion and killing. , 1994, FEMS immunology and medical microbiology.

[67]  P. Suci,et al.  Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms , 1994, Antimicrobial Agents and Chemotherapy.

[68]  F. Ausubel,et al.  Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Christensen,et al.  Distribution of Bacterial Growth Activity in Flow-Chamber Biofilms , 1999, Applied and Environmental Microbiology.

[70]  S. J. Knott,et al.  Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. , 1994, The Journal of antimicrobial chemotherapy.

[71]  G. Geesey,et al.  Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture , 1995, Applied and environmental microbiology.

[72]  F. Ausubel,et al.  Positive Correlation between Virulence ofPseudomonas aeruginosa Mutants in Mice and Insects , 2000, Journal of bacteriology.

[73]  G. O’Toole,et al.  Mechanisms of biofilm resistance to antimicrobial agents. , 2001, Trends in microbiology.

[74]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[75]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[76]  P. March,et al.  Molecular genetics of bacterial attachment and biofouling. , 1998, Current opinion in biotechnology.

[77]  H. Lappin-Scott,et al.  Influence of electric fields and pH on biofilm structure as related to the bioelectric effect , 1997, Antimicrobial agents and chemotherapy.

[78]  A. Camper,et al.  Characterization of Phenotypic Changes inPseudomonas putida in Response to Surface-Associated Growth , 2001, Journal of bacteriology.

[79]  D. Allison,et al.  Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? , 1988, The Journal of antimicrobial chemotherapy.

[80]  G. Pier,et al.  Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. , 1995, Journal of immunology.

[81]  M. Fletcher,et al.  Alterations in Adhesion, Transport, and Membrane Characteristics in an Adhesion-Deficient Pseudomonad , 1999, Applied and Environmental Microbiology.

[82]  T. Romeo,et al.  Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli , 2002, Journal of bacteriology.

[83]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[84]  F. Ausubel,et al.  Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Lawrence,et al.  Confocal laser scanning microscopy for analysis of microbial biofilms. , 1999, Methods in enzymology.

[86]  J. Costerton,et al.  Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria , 1994, Antimicrobial Agents and Chemotherapy.

[87]  Matthew R. Parsek,et al.  Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms , 2000, Nature.

[88]  S. Harthug,et al.  [Outbreak of multiresistant Acinetobacter baumannii infection]. , 2000, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.