Exponential Rosenbrock integrators for option pricing

In this paper, we are concerned with the time integration of differential equations modeling option pricing. In particular, we consider the Black-Scholes equation for American options. As an alternative to existing methods, we present exponential Rosenbrock integrators. These integrators require the evaluation of the exponential and related functions of the Jacobian matrix. The resulting methods have good stability properties. They are fully explicit and do not require the numerical solution of linear systems, in contrast to standard integrators. We have implemented some numerical experiments in Matlab showing the reliability of the new method.

[1]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[2]  M. Joshi The Concepts and Practice of Mathematical Finance , 2004 .

[3]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[4]  Noelle Foreshaw Options… , 2010 .

[5]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[6]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[7]  A. Ostermann,et al.  Implementation of exponential Rosenbrock-type integrators , 2009 .

[8]  R. Scholz,et al.  Numerical solution of the obstacle problem by the penalty method , 1986 .

[9]  A. Ostermann,et al.  A Class of Explicit Exponential General Linear Methods , 2006 .

[10]  Ricardo H. Nochetto,et al.  SharpL∞-error estimates for semilinear elliptic problems with free boundaries , 1989 .

[11]  Mari Paz Calvo,et al.  A class of explicit multistep exponential integrators for semilinear problems , 2006, Numerische Mathematik.

[12]  K. Manjunatha,et al.  Derivatives , 2006 .

[13]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[14]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[15]  John Jackson,et al.  Futures? , 2000 .

[16]  Javier de Frutos Implicit-explicit Runge-Kutta methods for financial derivatives pricing models , 2006, Eur. J. Oper. Res..

[17]  Reinhard Scholz,et al.  Numerical solution of the obstacle problem by the penalty method , 1984, Computing.

[18]  M. Hochbruck,et al.  Exponential Runge--Kutta methods for parabolic problems , 2005 .

[19]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[20]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[21]  R. Kolb Futures, Options, and Swaps , 1994 .

[22]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[23]  Marlis Hochbruck,et al.  Exponential Rosenbrock-Type Methods , 2008, SIAM J. Numer. Anal..