Exponential Rosenbrock integrators for option pricing
暂无分享,去创建一个
[1] P. Wilmott,et al. Option pricing: Mathematical models and computation , 1994 .
[2] M. Joshi. The Concepts and Practice of Mathematical Finance , 2004 .
[3] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[4] Noelle Foreshaw. Options… , 2010 .
[5] Peter A. Forsyth,et al. Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..
[6] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[7] A. Ostermann,et al. Implementation of exponential Rosenbrock-type integrators , 2009 .
[8] R. Scholz,et al. Numerical solution of the obstacle problem by the penalty method , 1986 .
[9] A. Ostermann,et al. A Class of Explicit Exponential General Linear Methods , 2006 .
[10] Ricardo H. Nochetto,et al. SharpL∞-error estimates for semilinear elliptic problems with free boundaries , 1989 .
[11] Mari Paz Calvo,et al. A class of explicit multistep exponential integrators for semilinear problems , 2006, Numerische Mathematik.
[12] K. Manjunatha,et al. Derivatives , 2006 .
[13] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..
[14] Peter A. Forsyth,et al. Penalty methods for American options with stochastic volatility , 1998 .
[15] John Jackson,et al. Futures? , 2000 .
[16] Javier de Frutos. Implicit-explicit Runge-Kutta methods for financial derivatives pricing models , 2006, Eur. J. Oper. Res..
[17] Reinhard Scholz,et al. Numerical solution of the obstacle problem by the penalty method , 1984, Computing.
[18] M. Hochbruck,et al. Exponential Runge--Kutta methods for parabolic problems , 2005 .
[19] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[20] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[21] R. Kolb. Futures, Options, and Swaps , 1994 .
[22] Curt Randall,et al. Pricing Financial Instruments: The Finite Difference Method , 2000 .
[23] Marlis Hochbruck,et al. Exponential Rosenbrock-Type Methods , 2008, SIAM J. Numer. Anal..