Low Temperature Polysilicon Materials and Devices

In this paper, we essentially discuss the material aspects of low temperature (≤ 600 °C) polysilicon technologies. Emphasis is put on the properties of polysilicon films, depending on the way they are obtained. Solid phase crystallisation as well as pulsed laser crystallisation processes are presented in some detail, together with thin film transistor characteristics. Although not yet stabilised and despite uniformity and reproducibility problems, laser crystallisation will probably end up being the technology of choice for the manufacture of large area electronics products, because it allows the fabrication of devices exhibiting superior properties, with a reduced thermal budget.

[1]  J. Washburn,et al.  Some observations on the amorphous to crystalline transformation in silicon , 1982 .

[2]  D. N. Mashburn,et al.  Solidification of highly undercooled liquid silicon produced by pulsed laser melting of ion-implanted amorphous silicon: Time-resolved and microstructural studies , 1987 .

[3]  G. Fortunato,et al.  Determination of gap state density in polycrystalline silicon by field‐effect conductance , 1986 .

[4]  Miltiadis K. Hatalis,et al.  Deposition and Crystallization of a‐Si Low Pressure Chemically Vapor Deposited Films Obtained by Low‐Temperature Pyrolysis of Disilane , 1993 .

[5]  G. J. Galvin,et al.  Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation , 1984 .

[6]  D. Pribat,et al.  Low temperature polysilicon TFTs: a comparison of solid phase and laser crystallization , 1995 .

[7]  I. Wu,et al.  Direct observation of crystallization in silicon by in situ high-resolution electron microscopy , 1993 .

[8]  M. Magis,et al.  Deposition and Crystallisation Behaviour of Amorphous Silicon Thin Films Obtained by Pyrolysis of Disilane Gas at Very Low Pressure , 1994 .

[9]  James S. Im,et al.  On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films , 1994 .

[10]  N. Proust,et al.  Structure and crystal growth of atmospheric and low‐pressure chemical‐vapor‐deposited silicon films , 1986 .

[11]  Noriyoshi Yamauchi,et al.  Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film , 1991 .

[12]  Y. Nagae,et al.  A 10-s doping technology for the application of low-temperature polysilicon TFTs to giant microelectronics , 1993 .

[13]  T. Sigmon,et al.  Substrate‐orientation dependence of the epitaxial regrowth rate from Si‐implanted amorphous Si , 1978 .

[14]  Germain,et al.  Transient solid-phase crystallization study of chemically vapor-deposited amorphous silicon films by in situ x-ray diffraction. , 1989, Physical review. B, Condensed matter.

[15]  Miltiadis K. Hatalis,et al.  Structure of As‐Deposited LPCVD Silicon Films at Low Deposition Temperatures and Pressures , 1992 .

[16]  T. Lei,et al.  Growth of undoped polycrystalline Si by an ultrahigh vacuum chemical vapor deposition system , 1993 .

[17]  Krishna C. Saraswat,et al.  Structure and Stability of Low Pressure Chemically Vapor‐Deposited Silicon Films , 1978 .

[18]  H. Leamy,et al.  Laser-solid interactions and laser processing, 1978 , 1979 .

[19]  R. F. Wood,et al.  Time-Resolved and Nicrostructural Studies of Solidification in Undercooled Liquid Silicon , 1988 .

[20]  A. J. Lowe,et al.  Low defect-density polycrystalline silicon for high performance thin film transistors , 1987 .

[21]  Murakami,et al.  Explosive crystallization starting from an amorphous-silicon surface region during long pulsed-laser irradiation. , 1987, Physical review letters.

[22]  O. Huet,et al.  High Mobility Non-Hydrogenated Low Temperature Polysilicon TFTs , 1994 .

[23]  S. Tsuda,et al.  Comprehensive Study of Lateral Grain Growth in Poly-Si Films by Excimer Laser Annealing and Its Application to Thin Film Transistors , 1994 .

[24]  J. Brews Physics of the MOS Transistor , 1981 .

[25]  K. Miyata,et al.  Crystallization of LPCVD Silicon Films by Low Temperature Annealing , 1989 .

[26]  Mitsutoshi Miyasaka,et al.  Transistor and physical properties of polycrystalline silicon films prepared by infralow‐pressure chemical vapor deposition , 1993 .

[27]  Hyun Jae Kim,et al.  Excimer Lasbr Induced Crystallization of thin Amorphous Si Films on SiO 2 : Implications of Crystallized Microstructures for Phase Transformation Mechanisms , 1992 .

[28]  G. Lu,et al.  Pressure‐enhanced crystallization kinetics of amorphous Si and Ge: Implications for point‐defect mechanisms , 1991 .

[29]  Masaki Hara,et al.  Measuring the Temperature of a Quartz Substrate during and after the Pulsed Laser-Induced Crystallization of a-Si:H , 1989 .

[30]  R. Elliman,et al.  Role of electronic processes in epitaxial recrystallization of amorphous semiconductors , 1983 .

[31]  Stiffler,et al.  Supercooling and nucleation of silicon after laser melting. , 1988, Physical review letters.

[32]  D. Turnbull,et al.  Chapter 2 – Crystallization Processes , 1982 .

[33]  G. Ottaviani,et al.  Science and technology of thin films , 1995 .

[34]  M. Hirose,et al.  Electronic properties of chemically deposited polycrystalline silicon , 1979 .

[35]  H. Kim,et al.  Structure and crystallization of low-pressure chemical vapor deposited silicon films using Si2H6 gas , 1992 .

[36]  M. Hirose,et al.  Energy distribution of trapping states in polycrystalline silicon , 1980 .

[37]  T. Sameshima,et al.  SiO2 formation by thermal evaporation of SiO in oxygen atmosphere used to fabrication of high performance polycrystalline silicon thin film transistors , 1994 .

[38]  M. Hatalis,et al.  Crystallized mixed‐phase silicon films for thin film transistors on glass substrates , 1993 .

[39]  G. Fortunato,et al.  Field-effect analysis for the determination of gap-state density and Fermi-level temperature dependence in polycrystalline silicon , 1988 .

[40]  A. Iwasaki,et al.  Low-Temperature Polysilicon Thin Film Transistors by Non-Mass-Separated Ion Flux Doping Technique , 1990 .

[41]  Beeman,et al.  Structural information from the Raman spectrum of amorphous silicon. , 1985, Physical review. B, Condensed matter.

[42]  D. Pribat,et al.  Kinetics of Crystallization of Amorphous and Mixed-Phase Silicon Films Deposited by Pyrolysis of Disilane Gas at Very Low Pressure , 1995 .

[43]  W. Sinke,et al.  Variable strain energy in amorphous silicon , 1988 .

[44]  Jean-Pierre Colinge,et al.  Use of selective annealing for growing very large grain silicon on insulator films , 1982 .

[45]  Shuhei Tsuchimoto,et al.  Formation of Sources/Drains Using Self-Activation Technique on Polysilicon Thin Film Transistors , 1994 .

[46]  James W. Mayer,et al.  Laser Annealing of Semiconductors , 1983 .